首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
  1999年   1篇
  1990年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有15条查询结果,搜索用时 125 毫秒
1.
Glucose at pathophysiological concentrations was able to accelerate copper-induced oxidation of isolated low-density lipoprotein (LDL) and whole serum. The efficiency of glucose was favored under the following circumstances: (a) when LDL oxidation was induced by low copper concentration, (b) when LDL was partly oxidized, i.e. enriched with lipid peroxides. The glucose derivative methyl- &#102 - d -glucoside was ineffective on Cu 2+ -induced LDL oxidation, pointing out the essential role of the reactivity of the aldehydic carbon for the pro-oxidative effect. When LDL oxidation was induced by a peroxyl radical generator, as a model of transition metal independent oxidation, glucose was ineffective. Glucose was found to stimulate oxidation of LDL induced by ceruloplasmin, the major copper-containing protein of human plasma. Thus, glucose accelerated oxidation of LDL induced by both free and protein bound copper. Considering the requirement for catalytically active copper and for the aldehydic carbon, the pro-oxidative effect of glucose is likely to depend on the increased availability of Cu + ; this is more efficient in decomposing lipid peroxide than Cu 2+ , accounting for acceleration of LDL oxidation. The possible biological relevance of our work is supported by the finding that glucose was able to accelerate oxidation of whole serum, which was assessed by monitoring low-level chemiluminescence associated with lipid peroxidation.  相似文献   
2.
Glucose at pathophysiological concentrations was able to accelerate copper-induced oxidation of isolated low-density lipoprotein (LDL) and whole serum. The efficiency of glucose was favored under the following circumstances: (a) when LDL oxidation was induced by low copper concentration, (b) when LDL was partly oxidized, i.e. enriched with lipid peroxides. The glucose derivative methyl-alpha-D-glucoside was ineffective on Cu2+-induced LDL oxidation, pointing out the essential role of the reactivity of the aldehydic carbon for the pro-oxidative effect. When LDL oxidation was induced by a peroxyl radical generator, as a model of transition metal independent oxidation, glucose was ineffective. Glucose was found to stimulate oxidation of LDL induced by ceruloplasmin, the major copper-containing protein of human plasma. Thus, glucose accelerated oxidation of LDL induced by both free and protein bound copper. Considering the requirement for catalytically active copper and for the aldehydic carbon, the pro-oxidative effect of glucose is likely to depend on the increased availability of Cu+; this is more efficient in decomposing lipid peroxide than Cu2+, accounting for acceleration of LDL oxidation. The possible biological relevance of our work is supported by the finding that glucose was able to accelerate oxidation of whole serum, which was assessed by monitoring low-level chemiluminescence associated with lipid peroxidation.  相似文献   
3.
The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets.  相似文献   
4.
5.
Here, we describe a one‐step, in vivo CRISPR/Cas9 nuclease‐mediated strategy to generate knock‐in mice. We produced knock‐in (KI) mice wherein a 1.9‐kb DNA fragment bearing a pre‐arranged human B‐cell receptor heavy chain was recombined into the native murine immunoglobulin locus. Our methodology relies on Cas9 nuclease‐induced double‐stranded breaks directed by two sgRNAs to occur within the specific target locus of fertilized oocytes. These double‐stranded breaks are subsequently repaired via homology‐directed repair by a plasmid‐borne template containing the pre‐arranged human immunoglobulin heavy chain. To validate our knock‐in mouse model, we examined the expression of the KI immunoglobulin heavy chains by following B‐cell development and performing single B‐cell receptor sequencing. We optimized this strategy to generate immunoglobulin KI mice in a short amount of time with a high frequency of homologous recombination (30–50%). In the future, we envision that such knock‐in mice will provide much needed vaccination models to evaluate immunoresponses against immunogens specific for various infectious diseases.  相似文献   
6.
In this study oxidation of low-density lipoprotein (LDL) induced by different Cu2+ concentrations was investigated. Lipid peroxidation was assessed by monitoring low-level chemiluminescence (LL-CL), conjugated diene hydroperoxide (CD) and alpha-tocopherol (TocOH), the major lipophilic antioxidant in LDL. At high Cu2+ concentration, LDL oxidation was characterised by CD formation, LL-CL emission and TocOH consumption. At low Cu2+ concentration, CD formation was independent of LL-CL and occurred in the presence of TocOH. Thus, two different mechanisms lead to lipid peroxide formation in LDL. The combination of CD assay and LL-CL monitoring makes it possible to distinguish the autocatalytic mechanism of CD formation and that associated with TocOH, found at a high and a low rate of initiation, respectively.  相似文献   
7.

Objective

We investigated the potential relationship between T-cell phenotype, inflammation, endotoxemia, and atherosclerosis evaluated by carotid intima-media thickness (IMT) in a cohort of HIV-positive patients undergoing long-term virologically suppressive combination antiretroviral therapy (cART).

Design

We studied 163 patients receiving virologically suppressive cART.

Methods

We measured IMT (carotid ultrasound); CD4+/CD8+ T-cell activation (CD38, CD45R0), differentiation (CD127), apoptosis (CD95), and senescence (CD28, CD57) (flow cytometry); plasma sCD14, IL-6, TNF- α, sVCAM-1, hs-CRP, anti-CMV IgG (ELISA); LPS (LAL). The results were compared by Mann-Whitney, Kruskal-Wallis or Chi-square tests, and factors associated with IMT were evaluated by multivariable logistic regression.

Results

Of 163 patients, 112 demonstrated normal IMT (nIMT), whereas 51 (31.3%) had pathological IMT (pIMT: ≥1 mm). Of the patients with pIMT, 22 demonstrated an increased IMT (iIMT), and 29 were shown to have plaques. These patient groups had comparable nadir and current CD4+, VLs and total length of time on cART. Despite similar proportions of CD38-expressing CD8+ cells (p = .95), pIMT patients exhibited higher activated memory CD8+CD38+CD45R0+ cells (p = .038) and apoptotic CD4+CD95+ (p = .01) and CD8+CD95+ cells (p = .003). In comparison to nIMT patients, iIMT patients tended to have lower numbers of early differentiated CD28+CD57− memory CD4+ (p = .048) and CD28–CD57−CD8+ cells (p = .006), both of which are associated with a higher proliferative potential. Despite no differences in plasma LPS levels, pIMT patients showed significantly higher circulating levels of sCD14 than did nIMT patients (p = .046). No differences in anti-CMV IgG was shown. Although circulating levels of sCD14 seemed to be associated with a risk of ATS in an unadjusted analysis, this effect was lost after adjusting for classical cardiovascular predictors.

Conclusions

Despite the provision of full viral suppression by cART, a hyperactivated, pro-apoptotic T-cell profile characterizes HIV-infected patients with early vascular damage, for whom the potential contribution of subclinical endotoxemia and anti-CMV immunity should be investigated further.  相似文献   
8.

Background

Long term efficacy of raltegravir (RAL)-including regimens in highly pre-treated HIV-1-infected patients has been demonstrated in registration trials. However, few studies have assessed durability in routine clinical settings.

Methods

Antiretroviral treatment-experienced patients initiating a RAL-containing salvage regimen were enrolled. Routine clinical and laboratory follow-up was performed at baseline, week 4, 12, and every 12 weeks thereafter. Data were censored at week 96.

Results

Out of 320 patients enrolled, 292 (91.25%) subjects maintained their initial regimen for 96 weeks; 28 discontinued prematurely for various reasons: death (11), viral failure (8), adverse events (5), loss to follow-up (3), consent withdrawal (1). Eight among these 28 subjects maintained RAL but changed the accompanying drugs. The mean CD4+ T-cell increase at week 96 was 227/mm3; 273 out of 300 patients (91%), who were still receiving RAL at week 96, achieved viral suppression (HIV-1 RNA <50 copies/mL). When analyzing the immuno-virologic outcome according to the number of drugs used in the regimen, 2 (n = 45), 3 (n = 111), 4 (n = 124), or >4 (n = 40), CD4+ T-cell gain was similar across strata: +270, +214, +216, and +240 cells/mm3, respectively, as was the proportion of subjects with undetectable viral load. Laboratory abnormalities (elevation of liver enzymes, total cholesterol and triglycerides) were rare, ranging from 0.9 to 3.1%. The mean 96-week total cholesterol increase was 23.6 mg/dL.

Conclusions

In a routine clinical setting, a RAL-based regimen allowed most patients in salvage therapy to achieve optimal viral suppression for at least 96 weeks, with relevant immunologic gain and very few adverse events.  相似文献   
9.
10.
The anomalous lipemic values are considered as a risk factor in coronarial pathology. We are separately studying different lipemic factors, Lp(a) in the present paper. May be our 38 clinical cases are still a too small number to demonstrate any correlation between Lp(a) haematic content and arterial pathology, and we will continue this study in the evolution of the pathology, eventually until the infarctus. For the moment, we established the significance of correlation between two methods in two laboratories of ours (in Pavia, Italy, and in Lisboa, Portugal). Correlation is more than 0.9. Assays were done on the same air mailed samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号