首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   4篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   3篇
  2011年   5篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有93条查询结果,搜索用时 18 毫秒
1.
2.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
3.
4.
A series of 16 novel 1,2,4-triazine derivatives bearing hydrazone moiety (7a7p) have been designed, synthesized and evaluated for their activity to inhibit IL-1β and TNF-α production. All compounds are reported for the first time. The chemical structures of all compounds were confirmed by spectroscopic methods and elemental analyzes. Most of the synthesized compounds were proved to have potent anti-cytokine activity and low toxicity on PBMC and MCF-7 cell lines. Compounds 7f, 7k, 7l and 7j presented simultaneously good levels of inhibition of both cytokines. Moreover, compound 7l exhibited good anti-inflammatory effect in carrageenan-induced rat paw edema. The results of Western blotting demonstrated that the anti-cytokine potential of compound 7l is mainly mediated through the inhibition of p38 MAPK signaling pathway. Molecular docking was performed to position compound 7l into p38α binding site in order to explore the potential target. The information of this work might be helpful for the design and synthesis of novel scaffold toward the development of new therapeutic agent to fight against inflammatory diseases.  相似文献   
5.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
6.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   
7.
8.
Fragile histidine trail (FHIT) is a tumor suppressor in response to DNA damage which has been deleted in various tumors. However, the signaling mechanisms and interactions of FHIT with regard to apoptotic proteins including p53 and p38 in the DNA damage-induced apoptosis are not well described. In the present study, we used etoposide-induced DNA damage in MCF-7 as a model to address these crosstalks. The time course study showed that the expression of FHIT, p53, and p38MAPK started after 1 hour following etoposide treatment. FHIT overexpression led to increase p53 expression, p38 activation, and augmented apoptosis following etoposide-induced DNA damage compared to wild-type cells. However, FHIT knockdown blocked p53 expression, delayed p38 activation, and completely inhibited etoposide-induced apoptosis. Inhibition of p38 activity prevented induction of p53, FHIT, and apoptosis in this model. Thus, activation of p38 upon etoposide treatment leads to increase in FHIT and p53 expression. In p53 knockdown MCF-7, the FHIT induction was hampered but p38 activation was induced in lower doses of etoposide. In p53 knockdown cells, inhibition of p38 induced FHIT expression and apoptosis. Our data demonstrated that the exposure of MCF-7 cells to etoposide increases apoptosis through a mechanism involving the activation of the p38-FHIT-p53 pathway. Moreover, our findings suggest signaling interaction for these pathways may represent a promising therapy for breast cancer.  相似文献   
9.
Diacylglycerol (DAG)and ceramide are important second messengers affecting cell growth,differentiation, and apoptosis. Balb/c-3T3 fibroblast cellsexpressing dopamine-D2S (short) receptors (Balb-D2S cells) provide amodel of G protein-mediated cell growth and transformation. In Balb-D2Scells, apomorphine (EC50 = 10 nM) stimulated DAG and ceramide formation by 5.6- and 4.3-fold, respectively, maximal at1 h and persisting over 6 h. These actions were blocked by pretreatment with pertussis toxin (PTX), implicatingGi/Go proteins. To address which G proteins areinvolved, Balb-D2S clones expressing individual PTX-insensitiveGi proteins were treated with PTX and tested forapomorphine-induced responses. Neither PTX-insensitive Gi2 nor Gi3 rescued D2S-induced DAG orceramide formation. Both D2S-induced DAG and ceramide signals requiredG-subunits and were blocked by inhibitors of phospholipaseC[1-(6-[([17]-3-methoxyestra-1,2,3[10]-trien- 17yl)amino]hexyl)-1H-pyrrole-2,5-dione(U-73122) and partially by D609]. The similar G protein specificity ofD2S-induced calcium mobilization, DAG, and ceramide formation indicatesa common G-dependent phospholipase C-mediated pathway. Both D2agonists and ceramide specifically induced mitogen-activated proteinkinase (ERK1/2), suggesting that ceramide mediates a novel pathway ofD2S-induced ERK1/2 activation, leading to cell growth.

  相似文献   
10.
Nitric oxide is known to modulate intracellular glutathione levels, but the relationship between nitric oxide synthesis and glutathione metabolism during endotoxemia is unknown. The present study was designed to examine the effects of increased nitric oxide formation on hepatic glutathione synthesis and antioxidant defense in endotoxemic mice. Our results demonstrate that hepatic glutathione synthesis is decreased for 24 h following injection of lipopolysaccharide (LPS). Administration of the cysteine precursor, L-2-oxothiazolidine-4-carboxylic acid (OTZ), failed to normalize hepatic glutathione concentration, and suggests that decreased γ-glutamylcysteine ligase activity is primarily responsible for the decrease in hepatic glutathione levels during endotoxemia. Inhibition of nitric oxide synthesis prevented the endotoxin-induced changes in hepatic and plasma glutathione status and up-regulated liver glutathione and cysteine synthesis pathways at the level of gene expression. Furthermore, whereas the activity of glutathione peroxidase and glutathione S-transferase decreased during endotoxemia, both of these changes were prevented by inhibition of nitric oxide synthesis. In conclusion, increased nitric oxide synthesis during endotoxemia causes marked changes in glutathione flux and defenses against oxidative stress in the liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号