首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   17篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   6篇
  2009年   7篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   8篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1999年   9篇
  1998年   5篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   6篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   8篇
  1980年   2篇
  1979年   11篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有160条查询结果,搜索用时 265 毫秒
1.
2.
3.
4.
The vesicular-arbuscular mycorrhizal fungi (VAMF) Glomus clarum (Nicol. and Schenck) isolate NT4, G. mosseae (Nicol. and Gerd.) Gerd. and Trappe isolate NT6 and G. versiforme (Karst.) Berch isolate NT7 coexist in wheat field soils in Saskatchewan. This study assessed the response of lentil (Lens esculenta L.) and wheat (Triticum aestivum L.) to monospecific and mixed cultures of these VAMF isolates. Seedlings were inoculated with 100 spores of a VAMF isolate, or an equal mixture of spores of two isolates, and grown in a sterile soil mix in a growth chamber. Both crops responded differently to these different VAMF isolates. In the case of lentil, G. clarum NT4 was more effective than G. mosseae NT6 and G. versiforme NT7, and significantly increased (P<0.05) the shoot dry weight (43%) and grain yield (57%) compared with the uninoculated control. There was a significant positive correlation between the percentage of VAMF colonized roots and shoot dry weight (r=0.672***) and shoot phosphorus concentration (r=0.608***) of lentil. In the case of wheat, G. clarum NT4 had no effect on shoot dry weight, but produced significant (P<0.08) increases in grain yield (12%) and the phosphorus concentration of the shoot and grain. Although G. clarum NT4 and G. mosseae NT6 both produced similar levels of VAM colonization in wheat, the only response of wheat to isolate NT6 was an increase in plant height at harvest. The efficacy of G. clarum NT4 on both crops appeared to be related to its ability to produce more arbuscular colonization than G. mosseae NT6. Dual inoculation of seedlings with G. clarum NT4 and G. mosseae NT6 resulted in competition between these two isolates. This was evident from a comparison of plant shoot dry weight and grain yield, and VAMF spore production on the two crops inoculated either with isolate NT4 alone or in combination with NT6. G. mosseae NT6 reduced the efficacy of G. clarum NT4 by 16% when dual inoculated on lentil, but had no effect when the host was wheat. Based on spore production, it was found that G. clarum NT4 was more competitive than G. mosseae NT6 when dual inoculated on lentil or wheat. Isolate NT4 produced ca. 2000 and 500 spores/ 100 g substrate, respectively, in the lentil and wheat pots, which was approximately 2–3 times more spores than those produced by isolate NT6 with either crop. When the plants were dual inoculated, there was a 15–19% reduction in spore production by G. clarum NT4 and a 50–70% decrease in spore production by G. mosseae NT6. Our results show that G. clarum NT4 was more competitive and effective in its ability to colonize and increase the growth and yield of lentil and wheat than G. mosseae NT6 or G. versiforme NT7. The relative performance of isolate NT4 with different host plants suggests that this VAMF isolate exhibits a host preference for lentil.  相似文献   
5.
The toxicity of metals, including mercury, is expressed differently in different media, and the addition of soluble organics to the growth medium can have a significant impact on bioassay results. Although the effect of medium composition on metal toxicity is generally attributed to its effect on metal speciation (i.e., the chemical form in which the metal occurs), the importance of individual metal-ligand species remains largely unclear. Here, we report the results of a study that investigated, both experimentally and from a modeling perspective, the effects of complex soluble organic supplements on the acute toxicity (i.e., 50% inhibitory concentration [IC50]) of mercury to a Pseudomonas fluorescens isolate in chemically well-defined synthetic growth media (M-IIX). The media consisted of a basal inorganic salts medium supplemented with glycerol (0.1%, vol/vol) and a variety of common protein hydrolysates (0.1%, vol/vol), i.e., Difco beef extract (X = B), Casamino Acids (X = C), peptone (X = P), soytone (X = S), tryptone (X = T), and yeast extract (X = Y). These were analyzed to obtain cation, anion, and amino acid profiles and the results were used to compute the aqueous speciation of Hg(II) in the media. Respirometric bioassays were performed and IC50s were calculated. Medium components varied significantly in their effects on the acute toxicity of Hg(II) to the P. fluorescens isolate. IC50s ranged from 1.48 to 14.54 micrograms of Hg ml-1, and the acute toxicity of Hg(II) in the different media decreased in the order M-IIC >> M-IIP > M-IIB >> M-IIT > M-IIS >>> M-IIY.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
7.
Summary This study examined the effects of trifluralin (,,-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), a soil incorporated herbicide, on soil microflora both in the general soil environment and in the rhizosphere of trifluralin damaged wheat roots. Two Dark Brown Chernozemic soils were treated with various trifluralin rates in the growth chamber and wheat [Triticum aestivum L. Neepawa] was seeded. Trifluralin generally had no effect on fungi, bacteria, or actinomycete populations in either the general soil or in the rhizosphere. CO2 evolution was unchanged when trifluralin was added to the soil. In wheat plots, at two field locations, there were no significant effects of trifluralin (1.0 kg ha–1) on soil fungi, bacteria, actinomycete, denitrifying bacteria, and nitrifying Nitrobacter propulations. A pure culture study with 42 soil microorganisms showed that many isolates were inhibited at 400 to 100,000 g g–1 but not at concentrations <16 g g–1. Similar data were obtained from tests on four different soils. These studies indicate that trifluralin is unlikely to cause changes in the numbers of soil microorganisms when used at recommended levels.  相似文献   
8.
9.
10.
Biotoxicity of mercury as influenced by mercury(II) speciation.   总被引:4,自引:4,他引:0       下载免费PDF全文
Integration of physicochemical procedures for studying mercury(II) speciation with microbiological procedures for studying the effects of mercury on bacterial growth allows evaluation of ionic factors (e.g., pH and ligand species and concentration) which affect biotoxicity. A Pseudomonas fluorescens strain capable of methylating inorganic Hg(II) was isolated from sediment samples collected at Buffalo Pound Lake in Saskatchewan, Canada. The effect of pH and ligand species on the toxic response (i.e., 50% inhibitory concentration [IC50]) of the P. fluorescens isolated to mercury were determined and related to the aqueous speciation of Hg(II). It was determined that the toxicities of different mercury salts were influenced by the nature of the co-ion. At a given pH level, mercuric acetate and mercuric nitrate yielded essentially the same IC50s; mercuric chloride, on the other hand, always produced lower IC50s. For each Hg salt, toxicity was greatest at pH 6.0 and decreased significantly (P = 0.05) at pH 7.0. Increasing the pH to 8.0 had no effect on the toxicity of mercuric acetate or mercuric nitrate but significantly (P = 0.05) reduced the toxicity of mercuric chloride. The aqueous speciation of Hg(II) in the synthetic growth medium M-IIY (a minimal salts medium amended to contain 0.1% yeast extract and 0.1% glycerol) was calculated by using the computer program GEOCHEM-PC with a modified data base. Results of the speciation calculations indicated that complexes of Hg(II) with histidine [Hg(H-HIS)HIS+ and Hg(H-HIS)2(2+)], chloride (HgCl+, HgCl2(0), HgClOH0, and HgCl3-), phosphate (HgHPO4(0), ammonia (HgNH3(2+), glycine [Hg(GLY)+], alanine [Hg(ALA)+], and hydroxyl ion (HgOH+) were the Hg species primarily responsible for toxicity in the M-IIY medium. The toxicity of mercuric nitrate at pH 8.0 was unaffected by the addition of citrate, enhanced by the addition of chloride, and reduced by the addition of cysteine. In the chloride-amended system, HgCl+, HgCl2(0), and HgClOH0 were the species primarily responsible for observed increases in toxicity. In the cysteine-amended system, formation of Hg(CYS)2(2-) was responsible for detoxification effects that were observed. The formation of Hg-citrate complexes was insignificant and had no effect on Hg toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号