首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   52篇
  2023年   1篇
  2021年   5篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   6篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   7篇
  2009年   5篇
  2008年   3篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   12篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   10篇
  1991年   11篇
  1990年   14篇
  1989年   10篇
  1988年   3篇
  1987年   12篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
排序方式: 共有230条查询结果,搜索用时 45 毫秒
1.
Escherichia coli has several overlapping DNA repair pathways which act in concert to eliminate the DNA damage caused by a diverse array of physical and chemical agents. The ABC excinuclease which is encoded by the uvrA, uvrB, and uvrC genes mediates both the incision and excision steps of nucleotide excision repair. Traditionally, this repair pathway has been assumed to be active against DNA adducts that cause major helical distortions. To determine the level of helical deformity required for recognition and repair by ABC excinuclease, we have evaluated the substrate specificity of this enzyme by using DNA damaged by N-methyl-N'-nitro-N-nitrosoguanidine. ABC excinuclease incised methylated DNA in vitro in a dose-dependent manner in a reaction that was ATP dependent and specific for the fully reconstituted enzyme. In vivo studies with various alkylation repair-deficient mutants indicated that the excinuclease participated in the repair of DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine.  相似文献   
2.
Escherichia coli DNA photolyase (photoreactivating enzyme) is a flavoprotein. The enzyme binds to DNA containing pyrimidine dimers in a light-independent step and, upon illumination with 300-600 nm radiation, catalyzes the photosensitized cleavage of the cyclobutane ring thus restoring the integrity of the DNA. We have studied the binding reaction using the techniques of nitrocellulose filter binding and flash photolysis. The enzyme binds to dimer-containing DNA with an association rate constant k1 estimated by two different methods to be 1.4 X 10(6) to 4.2 X 10(6) M-1 S-1. The dissociation of the enzyme from dimer-containing DNA displays biphasic kinetics; for the rapidly dissociating class of complexes k2 = 2-3 X 10(-2) S-1, while for the more slowly dissociating class k2 = 1.3 X 10(-3) to 6 X 10(-4) S-1. The equilibrium association constant KA, as determined by the nitrocellulose filter binding assay and the flash photolysis assay, was 4.7 X 10(7) to 6 X 10(7) M-1, in reasonable agreement with the values predicted from k1 and k2. From the dependence of the association constant on ionic strength we conclude that the enzyme contacts no more than two phosphodiester bonds upon binding; this strongly suggests that the pyrimidine dimer is the main structural determinant of specific photolyase-DNA interaction and that nonspecific ionic interactions do not contribute significantly to substrate binding.  相似文献   
3.
DNA photolyase repairs pyrimidine dimers in DNA in a reaction that requires visible light. Photolyase from Escherichia coli is normally isolated as a blue protein and contains 2 chromophores: a blue FAD radical plus a second chromophore that exhibits an absorption maximum at 360 nm when free in solution. Oxidation of the FAD radical is accompanied by a reversible loss of activity which is proportional to the fraction of the enzyme flavin converted to FADox. Quantitative reduction of the radical to fully reduced FAD causes a 3-fold increase in activity. The results show that a reduced flavin is required for activity and suggest that flavin may act as an electron donor in catalysis. Comparison of the absorption spectrum calculated for the protein-bound second chromophore (lambda max = 390 nm) with fluorescence data and with the relative action spectrum for dimer repair indicates that the second chromophore is the fluorophore in photolyase and that it does act as a sensitizer in catalysis. On the other hand, enzyme preparations containing diminished amounts of the second chromophore do not exhibit correspondingly lower activity. This suggests that reduced flavin may also act as a sensitizer in catalysis. The blue color of the enzyme is lost upon reduction of the FAD radical. The fully reduced E. coli enzyme exhibits absorption and fluorescence properties very similar to yeast photolyase. This indicates that the two enzymes probably contain similar chromophores but are isolated in different forms with respect to the redox state of the flavin.  相似文献   
4.
Platinum drugs with the 1,2-diaminocyclohexane (dach) carrier ligand have shown great promise in cancer chemotherapy, but little is known about their metabolism in the body. Since it is possible to radiolabel the dach ligand, it should be possible to quantitate the biotransformation products of these drugs, provided a method were available to separate the biotransformation products. In this paper we describe a two-column high-performance liquid chromatography system which can be used to separate many likely dach-platinum biotransformation products from the parent compounds, and allow their identification. An initial separation on a reverse-phase Partisil ODS-3 column allowed resolution of the uncharged species. The peak fractions from this column were concentrated 10-fold and reinjected onto a cation exchange Partisil 10 SCX column to allow resolution of the positively charged species. This system allowed resolution of two prototype dach-platinum drugs, (cis-1,2-diaminocyclohexane)dichloroplatinum(II) and (cis-1,2-diaminocyclohexane)malonatoplatinum(II), the aquated species likely to form from these drugs, and the complexes formed when these compounds react with glutathione, metallothionein, and amino acids. By using cation exchange chromatography at pH 2.3 as well as pH 4 and by using 14C-labeled amino acids to determine stoichiometry, it was also possible to determine the most likely structures for some of the amino acid complexes. Most importantly, this system allowed clear separation of many of the likely biotransformation products tested from the biologically important aquated species. This system should prove useful for separating and identifying the biotransformation products of dach-platinum drugs in blood and urine, in tissue culture media, and inside the cell.  相似文献   
5.
A 3.3-kilobase PvuII fragment carrying the PHR1 gene of Saccharomyces cerevisiae has been cloned into an Escherichia coli expression vector and introduced into E. coli strains deficient in DNA photolyase. Complementation of the E. coli phr-1 mutation was observed, strongly suggesting that the yeast PHR1 gene encodes a DNA photolyase.  相似文献   
6.
D J Beck  S Popoff  A Sancar    W D Rupp 《Nucleic acids research》1985,13(20):7395-7412
Mutants of Escherichia coli, which are blocked in excision repair (uvrA6, uvrB5, or uvrC34) are exceptionally sensitive to the antitumor drug cis-Pt(II)(NH3)2Cl2 (cis-DDP) but not the trans isomer. Plasmid DNA, damaged by either the cis or trans compound and treated with the UVRABC excision nuclease was cut as shown by conversion of supercoiled DNA to relaxed forms. All three protein products of the uvrA, uvrB, and uvrC genes were required for incision. End-labeled fragments damaged with cis-DDP and reacted with the UVRABC nuclease were cut at the 8th phosphodiester bond 5' and at the 4th phosphodiester bond 3' to adjacent GG's. DNA treated with trans-DDP was not cut appreciably at adjacent GG's by the repair enzyme as subsequent analysis of reaction products after enzyme digestion gave a pattern similar to those obtained with control untreated fragments. The results indicate that the UVRABC nuclease may promote cell survival by the removal of adjacent GG's which are crosslinked by cis-Pt(II)(NH3)2Cl2.  相似文献   
7.
Purification of Escherichia coli DNA photolyase   总被引:22,自引:0,他引:22  
Escherichia coli photolyase is a DNA repair enzyme which monomerizes pyrimidine dimers, the major UV photoproducts in DNA, to pyrimidines in a light-dependent reaction. We recently described the construction of a tac-phr plasmid that greatly overproduces the enzyme (Sancar, G. B., Smith, F. W., and Sancar, A. (1983) Nucleic Acids Res. 11, 6667-6678). Using a strain carrying the overproducing plasmid as the starting material, we have developed a purification procedure that yields several milligrams of apparently homogeneous enzyme. The purified protein is a single polypeptide that has an apparent Mr of 49,000 under both denaturing and nondenaturing conditions. The enzyme has no requirement for divalent cations and it restores the biological activity of irradiated DNA only in the presence of photoreactivating light. The purified photolyase has a turnover number of 2.4 dimers/molecule/min; this value agrees well with the in vivo rate of photoreactivation in E. coli.  相似文献   
8.
Identification and amplification of the E. coli phr gene product.   总被引:9,自引:1,他引:8       下载免费PDF全文
We have constructed a series of multicopy plasmids that complement mutations in the phr gene of Escherichia coli. By subcloning into a tac plasmid vector we obtained a phr plasmid that upon induction overproduces two proteins of Mr's 49,000 and 20,000. Tn1000 insertions into the phr gene caused the disappearance of the 49,000 dalton protein, thus demonstrating this protein to be the phr gene product, DNA photolyase. The photolyase encoded by the phr gene makes up about 15% of total cellular proteins after induction of cells carrying a tac-phr plasmid. This protein binds specifically to UV (254 nm) irradiated DNA and upon exposure to near UV (300-500 nm) illumination repairs the UV damage and dissociates from DNA.  相似文献   
9.
Structure and function of the (A)BC excinuclease of Escherichia coli   总被引:9,自引:0,他引:9  
C P Selby  A Sancar 《Mutation research》1990,236(2-3):203-211
(A)BC excinuclease is the enzymatic activity resulting from the mixture of E. coli UvrA, UvrB and UvrC proteins with damaged DNA. This is a functional definition as new evidence suggests that the three proteins never associate in a ternary complex. The UvrA subunit associates with the UvrB subunit in the form of an A2B1 complex which, guided by UvrA's affinity for damaged DNA binds to a lesion in DNA and delivers the UvrB subunit to the damaged site. The UvrB-damaged DNA complex is extremely stable (t1/2 congruent to 100 min). The UvrC subunit, which has no specific affinity for damaged DNA, recognizes the UvrB-DNA complex with high specificity and the protein complex consisting of UvrB and UvrC proteins makes two incisions, the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to the damaged nucleotide. (A)BC excinuclease recognizes DNA damage ranging from AP sites and thymine glycols to pyrimidine dimers, and the adducts of psoralen, cisplatinum, mitomycin C, 4-nitroquinoline oxide and interstrand crosslinks.  相似文献   
10.
We have used three methods to study the formation and repair of intrastrand adducts and interstrand cross-links in the DNA of Chinese hamster ovary cells induced by the anticancer drug cis-diamminedichloroplatinum II (cisplatin). Using atomic absorption spectroscopy, we found that 21% of the total genomic cisplatin adducts were removed at 8 h and 42% at 24 h. We used ABC excinuclease digestion, coupled with out previously reported methodology to quantify DNA in specific genomic regions. These adducts were removed faster in the transcribed dihydrofolate reductase and c-myc genes compared to a noncoding fragment, a region containing the little or nontranscribed c-fos oncogene, and to the overall genome. Interstrand cross-links in specific sequences were quantified by Southern hybridization of denatured-renatured DNA separated on a neutral gel. We found that cross-links were removed more efficiently from the gene regions than intrastrand adducts and, at high levels of cross-linking, removal was similar from transcribed and from nontranscribed regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号