首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   11篇
  国内免费   1篇
  2021年   4篇
  2020年   1篇
  2018年   8篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   14篇
  2012年   16篇
  2011年   9篇
  2010年   11篇
  2009年   9篇
  2008年   10篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  1999年   2篇
  1997年   2篇
排序方式: 共有141条查询结果,搜索用时 12 毫秒
1.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   
2.
Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD). COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI), we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL) medulla (pre-Bötzinger complex) and the caudal VL pons (parafacial group). fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in neurons can contribute to chaos in airflow and reproduces key experimental fMRI findings.  相似文献   
3.
4.
The BRAF gene, encoding a mitogen-activated protein kinase kinase kinase, is mutated in several human cancers, with the highest incidence occurring in cutaneous melanoma. The activating V599E mutation accounted for 80% of all mutations detected in cutaneous melanoma cell lines. Reconstitution experiments have shown that this mutation increases ectopically expressed B-Raf kinase activity and induces NIH3T3 cell transformation. Here we used tumor-derived cell lines to characterize the activity of endogenous mutated B-Raf protein and assess its specific role in transformation. We show that three cell lines (OCM-1, MKT-BR, and SP-6.5) derived from human choroidal melanoma, the most frequent primary ocular neoplasm in humans, express B-Raf containing the V599E mutation. These melanoma cells showed a 10-fold increase in endogenous B-RafV599E kinase activity and a constitutive activation of the MEK/ERK pathway that is independent of Ras. This, as well as melanoma cell proliferation, was strongly diminished by siRNA-mediated depletion of the mutant B-Raf protein. Moreover, blocking B-RafV599E-induced ERK activation by different experimental approaches significantly reduced cell proliferation and anchorage-independent growth of melanoma cells. Finally, quantitative immunoblot analysis allowed us to identify signaling and cell cycle proteins that are differentially expressed between normal melanocytes and melanoma cells. Although the expression of signaling molecules was not sensitive to U0126 in melanoma cells, the expression of a cluster of cell cycle proteins remained regulated by the B-RafV599E/MEK/ERK pathway. Our results pinpoint this pathway as an important component in choroidal melanoma cell lines.  相似文献   
5.
Rho family GTPases are important regulators of epithelial tight junctions (TJs); however, little is known about how the GTPases themselves are controlled during TJ assembly and function. We have identified and cloned a canine guanine nucleotide exchange factor (GEF) of the Dbl family of proto-oncogenes that activates Rho and associates with TJs. Based on sequence similarity searches and immunological and functional data, this protein is the canine homologue of human GEF-H1 and mouse Lfc, two previously identified Rho-specific exchange factors known to associate with microtubules in nonpolarized cells. In agreement with these observations, immunofluorescence of proliferating MDCK cells revealed that the endogenous canine GEF-H1/Lfc associates with mitotic spindles. Functional analysis based on overexpression and RNA interference in polarized MDCK cells revealed that this exchange factor for Rho regulates paracellular permeability of small hydrophilic tracers. Although overexpression resulted in increased size-selective paracellular permeability, such cell lines exhibited a normal overall morphology and formed fully assembled TJs as determined by measuring transepithelial resistance and by immunofluorescence and freeze-fracture analysis. These data indicate that GEF-H1/Lfc is a component of TJs and functions in the regulation of epithelial permeability.  相似文献   
6.
There is general agreement that free radicals are involved in reperfusion injury. Electron paramagnetic resonance (EPR) spectroscopy can be considered as the more suitable technique to directly measure and characterize free radical generation during myocardial ischemia and reperfusion. There are essentially two approaches used in the detection of unstable reactive species: freezing technique and spin traps. The detection of secondary free radicals or ascorbyl free radicals during reperfusion might provide an index of oxidative stress. Spin trapping can also characterize nitric oxide. EPR spectroscopy can provide important data regarding redox state and free radical metabolism but ideally, the spin traps must not interfere with cell or organism function.  相似文献   
7.
Modulation of host cellular GTPases through the injection of the effector proteins SopE2 and SptP is essential for Salmonella typhimurium to enter into non-phagocytic cells. Here we show that expression of the guanine nucleotide exchange factor for Cdc42 SopE2 in Saccharomyces cerevisiae leads to the activation of Fus3 and Kss1 MAPKs, which operate in the mating and filamentation pathways, causing filamentous growth in haploid yeast cells. Furthermore, it promotes the activation of the cell integrity MAPK Slt2. Cdc42 activation by removal of its putative intrinsic GTPase-activating proteins (GAPs), Rga1, Rga2, and Bem3, also results in the phosphorylation of Kss1, Fus3, and Slt2 MAPKs. These data support the role of these GAP proteins as negative regulators of Cdc42, confirm the modulating effect of this GTPase on the filamentation and mating pathways and point to a novel connection between Cdc42 and the cell integrity pathway. Cdc42-induced activation of Slt2 occurs in a mating and filamentation pathway-dependent manner, but it does not require the function of Rho1, which is the GTPase that operates in the cell integrity pathway. Moreover, we report that Salmonella SptP can act as a GAP for Cdc42 in S. cerevisiae, down-regulating MAPK-mediated signaling. Thus, yeast provides a useful system to study the interaction of bacterial pathogenic proteins with eukaryotic signaling pathways. Furthermore, these proteins can be used as a tool to gain insight into the mechanisms that regulate MAPK-mediated signaling in eukaryotes.  相似文献   
8.
Many reports now describe the manipulation of plant metabolism by suppressing the expression of single genes. The potential of such work could be greatly expanded if multiple genes could be coordinately suppressed. In the work presented here, we test a novel method for achieving this by using single chimeric constructs incorporating partial sense sequences for multiple genes to target suppression of two or three lignin biosynthetic enzymes. We compare this method with a more conventional approach to achieving the same end by crossing plants harboring different antisense transgenes. Our results indicate that crossing antisense plants is less straightforward and predictable in outcome than anticipated. Most progeny had higher levels of target enzyme activity than predicted and had lost the expected modifications to lignin structure. In comparison, plants transformed with the chimeric partial sense constructs had more consistent high level suppression of target enzymes and had significant changes to lignin content, structure, and composition. It was possible to suppress three target genes coordinately using a single chimeric construct. Our results indicate that chimeric silencing constructs offer great potential for the rapid and coordinate suppression of multiple genes on diverse biochemical pathways and that the technique therefore deserves to be adopted by other researchers.  相似文献   
9.
The goal of the present study was to identify candidate genes (CGs) involved in fruit quality in peach that can be transferred to other Rosaceae species. Two cDNA libraries from fruit of the “Fantasia” peach cultivar, constructed at two stages of development, were used to generate a set of expressed sequence tag sequences. A total of 1,730 peach unigenes were obtained after clustering. Sequences and corresponding annotations were stored in a relational database and are available through a web interface. Fifty-nine CGs involved in fruit growth and development or fruit quality at maturity, focusing on sweetness, acidity, and phenolic compound content, were selected according to their annotation. Fifty-five primer pairs, designed from peach CG sequences and giving PCR products in peach, were tested in strawberry and 36 gave amplified products. Eight CGs were mapped in peach, 14 in strawberry, four in both species and confirmed the pattern of synteny already proposed using comparative mapping. In peach, the CGs are located in three linkage groups (3, 5, 7), and in strawberry they are distributed in all seven Fragaria linkage groups. Colocalization between some of these CGs and quantitative trait loci for fruit quality traits were identified and are awaiting confirmation in further analyses.  相似文献   
10.
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号