首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   16篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   17篇
  2013年   19篇
  2012年   18篇
  2011年   17篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1983年   1篇
排序方式: 共有170条查询结果,搜索用时 31 毫秒
1.
2.
3.
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. In vivo, this facultative intracellular bacterium survives and replicates mainly in the cytoplasm of infected cells. We have recently identified a genetic locus, designated moxR that is important for stress resistance and intramacrophage survival of F. tularensis. In the present work, we used tandem affinity purification coupled to mass spectrometry to identify in vivo interacting partners of three proteins encoded by this locus: the MoxR-like ATPase (FTL_0200), and two proteins containing motifs predicted to be involved in protein–protein interactions, bearing von Willebrand A (FTL_0201) and tetratricopeptide (FTL_0205) motifs. The three proteins were designated here for simplification, MoxR, VWA1, and TPR1, respectively. MoxR interacted with 31 proteins, including various enzymes. VWA1 interacted with fewer proteins, but these included the E2 component of 2-oxoglutarate dehydrogenase and TPR1. The protein TPR1 interacted with one hundred proteins, including the E1 and E2 subunits of both oxoglutarate and pyruvate dehydrogenase enzyme complexes, and their common E3 subunit. Remarkably, chromosomal deletion of either moxR or tpr1 impaired pyruvate dehydrogenase and oxoglutarate dehydrogenase activities, supporting the hypothesis of a functional role for the interaction of MoxR and TPR1 with these complexes. Altogether, this work highlights possible links between stress resistance and metabolism in F. tularensis virulence.Francisella tularensis is responsible for the disease tularamia in a large number of animal species. This highly infectious bacterial pathogen can be transmitted to humans in numerous ways (1, 2, 3), including direct contact with sick animals, inhalation, ingestion of contaminated water or food, or by bites from ticks, mosquitoes, or flies. Four different subspecies (subsp.) of F. tularensis that differ in virulence and geographic distribution exist, designated subsp. tularensis (type A), subsp. holarctica (type B), subsp. Novicida, and subsp. mediasiatica, respectively. F. tularensis subsp. tularensis is the most virulent subspecies causing a severe disease in humans, whereas F. tularensis subsp. holarctica causes a similar disease but of less severity (4). Because of its high infectivity and lethality, F. tularensis is considered a potential bioterrorism agent (5).F. tularensis is able to survive and to replicate in the cytoplasm of a variety of infected cells, including macrophages. To resist this stressful environment, the bacterium must have developed stress resistance mechanisms, most of which are not yet well characterized. We recently reported the identification of a novel genetic locus that is important for stress resistance and intracellular survival of F. tularensis (6). This locus was designated moxR because the first gene FTL_0200, encodes a protein belonging to the AAA+ ATPase of the MoxR family ((7) and references therein). The data obtained in that first study had led us to suggest that the F. tularensis MoxR-like protein might constitute, in combination with other proteins of the locus, a chaperone complex contributing to F. tularensis pathogenesis.To further validate this hypothesis and expand our initial observations, we here decided to perform tandem affinity purification (TAP),1 using a dual affinity tag approach coupled to mass spectroscopy analyses (8), to identify proteins interacting in vivo with three proteins encoded by the proximal portion of the moxR locus. For this, we chose as baits: the MoxR-like protein (FTL_0200) and two proteins bearing distinct motifs possibly involved in protein–protein interactions, FTL_0201 (Von Willebrand Factor Type A domain, or VWA) and FTL_0205 (tetratrichopeptide repeat or TPR). The three proteins were designated here for simplification, MoxR, VWA1, and TPR1; and the corresponding genes moxR, vwa1, and tpr1, respectively.VWA domains are present in all three kingdoms of life. They consist of a β-sheet sandwiched by multiple α helices. Frequently, VWA domain-containing proteins function in multiprotein complexes (9). TPR typically contain 34 amino acids. Many three-dimensional structures of TPR domains have been solved, revealing amphipathic helical structures (10). TPR-containing proteins are also found in all kingdoms of life. They can be involved in a variety of functions, and generally mediate protein–protein interactions. In the past few years, several TPR-related proteins have been shown to be involved in virulence mechanisms in pathogenic bacteria ((11) and references therein).Our proteomic approach allowed us to identify a series of protein interactants for each of the three moxR-encoded proteins. Remarkably, the protein TPR1 interacted with all the subunits of the pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (OGDH) complexes. Furthermore, inactivation of tpr1 also severely impaired the activities of these two enzymes. Inactivation of tpr1 affected bacterial resistance to several stresses (and in particular oxidative stress), intramacrophagic bacterial multiplication and bacterial virulence in the mouse model. Functional implications and possible relationship between bacterial metabolism, stress defense, and bacterial virulence are discussed.  相似文献   
4.
A phylogeographic study was conducted on the Nile grass rat, Arvicanthis niloticus, a rodent species that is tightly associated with open grasslands from the Sudano-Sahelian regions. Using one mitochondrial (cytochrome b) and one nuclear (intron 7 of Beta Fibrinogen) gene, robust patterns were retrieved that clearly show that (i) the species originated in East Africa concomitantly with expanding grasslands some 2 Ma, and (ii) four parapatric and genetically well-defined lineages differentiated essentially from East to West following Pleistocene bioclimatic cycles. This strongly points towards allopatric genetic divergence within savannah refuges during humid episodes, then dispersal during arid ones; secondary contact zones would have then stabilized around geographic barriers, namely, Niger River and Lake Chad basins. Our results pertinently add to those obtained for several other African rodent as well as non-rodent species that inhabit forests, humid zones, savannahs and deserts, all studies that now allow one to depict a more comprehensive picture of the Pleistocene history of the continent south of the Sahara. In particular, although their precise location remains to be determined, at least three Pleistocene refuges are identified within the West and Central African savannah biome.  相似文献   
5.
Lise Comte  Gaël Grenouillet 《Ecography》2013,36(11):1236-1246
Understanding the ability of species to shift their distribution ranges in response to climate change is crucial for conservation biologists and resources managers. Although freshwater ecosystems include some of the most imperilled fauna worldwide, such range shifts have been poorly documented in streams and rivers and have never been compared to the current velocity of climate change. Based on national monitoring data, we examined the distributional changes of 32 stream fish species in France and quantified potential time lags in species responses, providing a unique opportunity to analyze range shifts over recent decades of warming in freshwater environments. A multi‐facetted approach, based on several range measures along spatial gradients, allowed us to quantify range shifts of numerous species across the whole hydrographic network between an initial period (1980–1992) and a contemporary one (2003–2009), and to contrast them to the rates of isotherm shift in elevation and stream distance. Our results highlight systematic species shifts towards higher elevation and upstream, with mean shifts in range centre of 13.7 m decade?1 and 0.6 km decade?1, respectively. Fish species displayed dispersal‐driven expansions along the altitudinal gradient at their upper range limit (61.5 m decade?1), while substantial range contractions at the lower limit (6.3 km decade?1) were documented for most species along the upstream–downstream gradient. Despite being consistent with the geographic variation in climate change velocities, these patterns reveal that the majority of stream fish have not shifted at a pace sufficient to track changing climate, in particular at their range centre where range shifts lag far behind expectation. Our study provides evidence that stream fish are currently responding to recent climate warming at a greater rate than many terrestrial organisms, although not as much as needed to cope with future climate modifications.  相似文献   
6.
Abnormally high concentrations of extracellular glutamate in the brain may cause neuronal damage via excitotoxicity. Thus, tight regulation of glutamate release is critical to neuronal function and survival. Excitotoxicity is caused mainly by overactivation of the extrasynaptic NMDA receptor (NMDAR) and results in specific cellular changes, including calcium-induced activation of calpain proteases. Here, we report that presenilin-1 (PS1) null mouse cortical neuronal cultures have increased amounts of calpain-dependent spectrin breakdown products (SBDPs) compared with WT cultures. NMDAR antagonists blocked accumulation of SBDPs, suggesting abnormal activation of this receptor in PS1 null cultures. Importantly, an increase in SBDPs was detected in cultures of at least 7 days in vitro but not in younger cultures. Conditioned medium from PS1 null neuronal cultures at 8 days in vitro contained higher levels of glutamate than medium from WT cultures and stimulated production of SBDPs when added to WT cultures. Use of glutamate reuptake inhibitors indicated that accumulation of this neurotransmitter in the media of PS1 null cultures was due to increased rates of release. PS1 null neurons showed decreased cell surface expression and phosphorylation of the GluN2B subunit of NMDAR, indicating decreased amounts of extrasynaptic NMDAR in the absence of PS1. Inhibition of γ-secretase activity in WT neurons caused changes similar to those observed in PS1 null neurons. Together, these data indicate that the PS1/γ-secretase system regulates release of glutamate, tyrosine phosphorylation, and surface expression of GluN2B-containing NMDARs.  相似文献   
7.
We have developed a novel in vivo superinfection fitness assay to examine superinfection dynamics and the role of virulence in superinfection fitness. This assay involves controlled, sequential infections of a natural vertebrate host, Oncorhynchus mykiss (rainbow trout), with variants of a coevolved viral pathogen, infectious hematopoietic necrosis virus (IHNV). Intervals between infections ranged from 12 h to 7 days, and both frequency of superinfection and viral replication levels were examined. Using virus genotype pairs of equal and unequal virulence, we observed that superinfection generally occurred with decreasing frequency as the interval between exposures to each genotype increased. For both the equal-virulence and unequal-virulence genotype pairs, the frequency of superinfection in most cases was the same regardless of which genotype was used in the primary exposure. The ability to replicate in the context of superinfection also did not differ between the genotypes of equal or unequal virulence tested here. For both genotype pairs, the mean viral load of the secondary virus was significantly reduced in superinfection while primary virus replication was unaffected. Our results demonstrate, for the two genotype pairs examined, that superinfection restriction does occur for IHNV and that higher virulence did not correlate with a significant difference in superinfection fitness. To our knowledge, this is the first assay to examine the role of virulence of an RNA virus in determining superinfection fitness dynamics within a natural vertebrate host.  相似文献   
8.
9.
10.
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号