首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4249篇
  免费   296篇
  国内免费   1篇
  2023年   36篇
  2022年   35篇
  2021年   148篇
  2020年   89篇
  2019年   109篇
  2018年   123篇
  2017年   120篇
  2016年   150篇
  2015年   242篇
  2014年   240篇
  2013年   309篇
  2012年   363篇
  2011年   324篇
  2010年   197篇
  2009年   167篇
  2008年   198篇
  2007年   241篇
  2006年   219篇
  2005年   191篇
  2004年   204篇
  2003年   136篇
  2002年   138篇
  2001年   67篇
  2000年   43篇
  1999年   47篇
  1998年   36篇
  1997年   24篇
  1996年   16篇
  1995年   22篇
  1994年   19篇
  1993年   14篇
  1992年   27篇
  1991年   26篇
  1990年   16篇
  1989年   21篇
  1988年   14篇
  1987年   13篇
  1986年   15篇
  1985年   14篇
  1984年   17篇
  1983年   12篇
  1982年   13篇
  1979年   6篇
  1975年   9篇
  1974年   6篇
  1973年   11篇
  1972年   6篇
  1971年   9篇
  1969年   7篇
  1968年   6篇
排序方式: 共有4546条查询结果,搜索用时 15 毫秒
1.
Heart failure is a major clinical problem worldwide. Previous studies have demonstrated an important role for G protein-coupled receptors, including protease-activated receptors (PARs), in the pathology of heart hypertrophy and failure. Activation of PAR-2 on cardiomyocytes has been shown to induce hypertrophic growth in vitro. PAR-2 also contributes to myocardial infarction and heart remodeling after ischemia/reperfusion injury. In this study, we found that PAR-2 induced hypertrophic growth of cultured rat neonatal cardiomyocytes in a MEK1/2 and p38 dependent manner. In addition, PAR-2 activation on mouse cardiomyocytes increased expression of the pro-fibrotic chemokine MCP-1. Furthermore, cardiomyocyte-specific overexpression of PAR-2 in mice induced heart hypertrophy, cardiac fibrosis, inflammation and heart failure. Finally, in a mouse model of myocardial infarction induced by permanent ligation of the left anterior descending coronary artery, PAR-2 deficiency attenuated heart remodeling and improved heart function independently of its contribution to the size of the initial infarct. Taken together, our data indicate that PAR-2 signaling contributes to the pathogenesis of hypertrophy and heart failure.  相似文献   
2.
3.
4.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   
5.
We evaluated the effectiveness of phages on meats and goat cheese contaminated with Salmonella Enteritidis (SE). In meats, reductions of SE were observed during the whole experiment, while in goat cheese a reduction was only observed at day 3. We discuss the relevance of phages as a biocontrol in food.  相似文献   
6.
7.
The cultivars of barley and wheat resistant to mildew had a higher level of free zeatin and its derivatives during the whole ontogeny than the susceptible cultivars. The effect of exogenous application of cytokinins on the growth ofErysiphe graminis DC. was different. Kinetin and benzylaminopurine showed only a slight inhibitory effect. Zeatin and its derivatives completely inhibited growth of this fungus. Presented at the International Symposium “Plant Growth Regulators” held on June 18-22 1984 at Liblice, Czechoslovakia.  相似文献   
8.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   
9.
P B Carroll  M X Li  E Rojas  I Atwater 《FEBS letters》1988,234(1):208-212
The effects of bicarbonate buffer (HCO3-/CO2) on the activity of the two K+ channels proposed by some to control the pancreatic B-cell membrane response to glucose were studied. Single K+-channel records from membrane patches of cultured B-cells dissociated from adult rat islets exposed to a glucose- and bicarbonate-free medium (Na-Hepes in place of bicarbonate) exhibit the activity of both the ATP-sensitive as well as the [Ca2+]i-activated K+ channels. However, in the presence of bicarbonate-buffered Krebs solution, the activity of the ATP-sensitive K+ channel is inhibited leaving the activity of the K+ channel activated by intracellular [Ca2+]i unaffected. In the absence of bicarbonate (Hepes/NaOH in place of bicarbonate), lowering the external pH from 7.4 to 7.0 also has differential effects on the two K+ channels. While the K+ channel sensitive to ATP is inhibited, the K+ channel activated by a rise in [Ca2+]i is not affected. To determine whether the response of the B-cell in culture to bicarbonate is also present when the B-cell is functioning within the islet syncytium, the effects of bicarbonate removal on membrane potential of B-cells from intact mouse islets were compared. These studies showed that glucose-evoked electrical activity is also blocked in bicarbonate-free Krebs solution. Furthermore, in the absence of bicarbonate and presence of glucose (11 mM), electrical activity was recovered by lowering the pHo from 7.4 to 7.0. The ATP-sensitive K+-channel activity is greatly reduced by physiologically buffered solutions in pancreatic B-cells in culture. The most likely explanation for the bicarbonate effects is that they are mediated by cytosolic pH changes. Removal of bicarbonate (keeping the external pH at 7.4 with Hepes/NaOH as buffer) would increase the pHi. Since the activity of the [Ca2+]i-dependent K+ channels is not affected by the removal of the bicarbonate buffer, our patch-clamp data in cultured B-cells indicate an involvement of [Ca2+]i-activated K+ channels in the control of the membrane potential. For the B-cell in the islet, we propose that the burst pattern of electrical activity (Ca2+ entry) is controlled, at least in part, by the [Ca2+]i-activated K+ channel.  相似文献   
10.
To test the hypothesis that activity of respiratory muscles determines regional growth of lung parenchyma, we studied the effects of unilateral diaphragmatic paralysis on contralateral/ipsilateral lung growth in cats and piglets. Five 10- to 12-wk-old cats and five 8-wk-old piglets underwent unilateral diaphragmatic paralysis by thoracic and cervical phrenectomy, respectively. Five to seven weeks after surgery, when the cats were killed for studies of lung growth, gain in body weight was the same as in five sham-operated controls. At this time, mean pleural pressure ipsilateral to the paralyzed hemidiaphragm was the same as contralateral mean pleural pressure during tidal breathing, and values did not differ from controls. However overall functional residual capacity was lower in the phrenectomized cats (35 +/- 4 ml) than in the controls (55 +/- 11 ml, P less than 0.01). Growth of contralateral lungs relative to ipsilateral lungs was greater in the phrenectomized cats than in the controls, as shown by ratios of contralateral/ipsilateral wet lung weight (1.44 vs. 1.34, P less than 0.01), maximum inflation volume (1.53 vs. 1.33, P less than 0.05), and total protein content (1.45 vs. 1.26, P less than 0.05). Ratios of total protein to DNA and RNA to DNA were unchanged. One week after surgery in the piglets, the ratio of contralateral/ipsilateral wet lung weight was increased (1.61 vs. 1.29, P less than 0.01) and total weight of both lungs was reduced. We conclude that regional growth of lung parenchyma by cell proliferation depends in part on regional distribution of respiratory muscle activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号