首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   11篇
  2022年   3篇
  2021年   11篇
  2020年   2篇
  2019年   7篇
  2018年   2篇
  2017年   5篇
  2016年   10篇
  2015年   15篇
  2014年   16篇
  2013年   18篇
  2012年   15篇
  2011年   13篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  1997年   1篇
排序方式: 共有158条查询结果,搜索用时 18 毫秒
1.
In our previous study, we demonstrated the potential of monocrotophos (MCP), an organophosphorus insecticide (OPI), to induce glucose intolerance, insulin resistance (IR), and dyslipidemia with hyperinsulinemia in rats after chronic exposure. As hyperinsulinemia is likely to exert an impact on hepatic lipid metabolism, we carried out this study to establish the effect of chronic MCP exposure (0.9 and 1.8 mg/kg/day for 180 days) on hepatic lipid metabolism in rats. The state of IR induced by MCP in rats was associated with an increase in the liver lipid content (triglyceride and cholesterol) and expression levels of sterol regulatory element‐binding proteins, PPARγ, acetyl‐CoA carboxylase, and fatty acid synthase in the liver. Similarly, activities of key enzymes (acetyl‐COA carboxylase, fatty acid synthase, lipin 1, malic enzyme, glucose‐6‐phosphate dehydrogenase, and glycerol‐3‐phosphate dehydrogenase), which regulate lipogenesis, were enhanced in livers of pesticide‐treated rats. A strong correlation was observed between insulin levels, hepatic lipid content, and plasma lipid profile in treated rats. Our study suggests that long‐term exposure to OPIs not only has a propensity to induce a state of hyperinsulinemic IR, but it is also associated with augmented hepatic lipogenesis, which may explain dyslipidemia induced by chronic exposure to MCP.  相似文献   
2.
Adipocytes play a vital role in glucose metabolism. 3T3 L1 pre adipocytes after differentiation to adipocytes serve as excellent in vitro models and are useful tools in understanding the glucose metabolism. The traditional approaches adopted in pre adipocyte differentiation are lengthy exercises involving the usage of IBMX and Dexamethasone. Any effort to shorten the time of differentiation and quality expression of functional differentiation in 3T3 L1 cells in terms of enhanced Insulin sensitivity has an advantage in the drug discovery process. Thus, there is a need to develop a new effective method of differentiating the pre adipocytes to adipocytes and to use such methods for developing efficacious therapeutic molecules. We observed that a combination of Dexamethasone and Troglitazone generated differentiated adipocytes over fewer days as compared to the combination of IBMX and Dexamethasone which constitutes the standard protocol followed in our laboratory. The experiments conducted to compare the quality of differentiation yielded by various differentiating agents indicated that the lipid droplet accumulation increased by 112 % and the GLUT4 mediated glucose uptake by 137 % in cells differentiated with Troglitazone and Dexamethasone than in cells differentiated traditionally. The comparative studies conducted for evaluating efficient measurable glucose uptake by GOPOD assay, radioactive 3H-2-deoxy-D-glucose assay and by non-radioactive 6-NBDG (fluorescent analog of glucose) indicated that the non-radioactive method using 6-NBDG showed a higher signal to noise ratio than the conventional indirect glucose uptake method (GOPOD assay) and the radioactive 3H-2-deoxy-D-glucose uptake method. Differentiated 3T3 L1 cells when triggered with 2.5 ng/mL of Insulin showed 3.3 fold more glucose uptake in non-radioactive method over the radioactive 3H-2-deoxy-D-glucose uptake method. The results of this study have suggested that a combination of Dexamethasone and Troglitazone for 3T3 L1 cell differentiation helps in better quality differentiation over a short period of time with increased sensitivity to Insulin. The application of these findings for developing new methods of screening novel Insulin mimetics and for evaluating the immunological responses has been discussed.  相似文献   
3.
4.
5.
Penicillin-Binding Proteins are peptidases that play an important role in cell-wall biogenesis in bacteria and thus maintaining bacterial infections. A wide class of β-lactam drugs are known to act on these proteins and inhibit bacterial infections by disrupting the cell-wall biogenesis pathway. Penicillin-Binding proteins have recently gained importance with the increase in the number of multi-drug resistant bacteria. In this work, we have collected a dataset of over 700 Penicillin-Binding and non-Penicillin Binding Proteins and extracted various sequence-related features. We then created models to classify the proteins into Penicillin-Binding and non-binding using supervised machine learning algorithms such as Support Vector Machines and Random Forest. We obtain a good classification performance for both the models using both the methods.  相似文献   
6.
According to International Diabetes Federation (IDF), India has 62.4 million people with diabetes and by 2030 it is predicted that the number will rise to 100 million. Studies claim that there are around 410 experimentally proven Indian medicinal plants which have anti-diabetic activity, of which the mechanism of action of 109 plants has been elucidated or reported. So, the need of the hour is to explore the claims of Indian medicinal flora and open up the facets of many Indian plants which are being examined for their beneficial role in diabetes. So, we created a database (InDiaMed) of Indian medicinal plants that captures their role in anti-diabetic activity. InDiaMed''s features include chemical, pharmacological, biochemical and geographical information of the medicinal plant, scientifically relevant information of the plant, and the coherent research done on it in the field of diabetes. The database also includes the list of poly-herbal formulations which are used for treatment of diabetes in India.

Availability

http://www.indiamed.info  相似文献   
7.
8.
9.
The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g?1, respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.  相似文献   
10.
Botulinum neurotoxin type A, the most toxic substance known to mankind, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs) through polycistronic expression of a clustered group of genes. Hemagglutinin-33 (Hn-33) is a 33 kDa subcomponent of NAPs, which is resistant to protease digestion, a feature likely to be involved in the protection of the botulinum neurotoxin from proteolysis. In order to fully understand the function of Hn-33, large amounts of Hn-33 will be needed without dealing with biosafety risks to grow large cultures of C. botulinum. There are difficulties to clone the genes with the high A + T contents produced by C. botulinum. We report here for the first time using the Gateway technology to clone functional Hn-33 that has been expressed in E. coli. The yield of the recombinant Hn-33 was about 12 mg per liter of E. coli culture. The recombinant Hn-33 folds well in aqueous solution as shown with circular dichroism spectra, resists temperature-denaturation, is totally resistant to trypsin proteolysis despite the presence of cleavage sites on the molecular surface, and maintains its biological activities comparable to the native Hn-33 hemagglutination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号