首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2021年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.

Winter is a challenging period for aquatic research—weather is uncomfortable, ice is hazardous, equipment fails, and daylength is short. Consequently, until recently relatively little research on freshwater fishes has included winter. Telemetry methods for tracking fish and observing movement behavior are an obvious solution to working in harsh conditions because much of the data can be collected remotely, and passive methods collect data year-round without winter maintenance. Yet, many telemetry studies do not collect data during winter or, if they do, only report data from the ice-free seasons while the remaining data are unused. Here, we briefly summarize the advantages and limitations of using telemetry methods in winter, including acoustic and radio telemetry and passive integrated transponder technology, then review the range of questions related to fish ecology, behavior, bioenergetics, and habitat use that can be addressed in winter using telemetry. Our goals are to highlight the untapped potential of winter fish biology and to motivate scientists to revisit their four-season telemetry data and incorporate objectives specific to winter biology in future study plans.

  相似文献   
2.
Thiamine deficiency complex (TDC) is a disorder resulting from the inability to acquire or retain thiamine (vitamin B1) and has been documented in organisms in aquatic ecosystems ranging from the Baltic Sea to the Laurentian Great Lakes. The biological mechanisms leading to TDC emergence may vary among systems, but in fishes, one common outcome is high mortality among early life stages. Here, we review the causes and consequences of thiamine deficiency in fishes and identify potential solutions. First, we examine the biochemical and physiological roles of thiamine in vertebrates and find that thiamine deficiency consistently results in impaired neurological function across diverse taxa. Next, we review natural producers of thiamine, which include bacteria, fungi, and plants, and suggest that thiamine is not currently limiting for most animal species inhabiting natural aquatic environments. A survey of historic occurrences of thiamine deficiency identifies consumption of a thiamine-degrading enzyme, thiaminase, as the primary explanation for low levels of thiamine in individuals and subsequent onset of TDC. Lastly, we review conservation and management strategies for TDC mitigation ranging from evolutionary rescue to managing for a diverse forage base. As recent evidence suggests occurrences of thiamine deficiency may be increasing in frequency, increased awareness and a better mechanistic understanding of the underlying causes associated with thiamine deficiency may help prevent further population declines.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号