首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2010年   2篇
排序方式: 共有7条查询结果,搜索用时 823 毫秒
1
1.
Purpose

The building sector is one of the most relevant sectors in terms of environmental impact. Different functional units (FUs) can be used in life cycle assessment (LCA) studies for a variety of purposes. This paper aimed to present different FUs used in the LCA of buildings and evaluate the influence of FU choice and setting in comparative studies.

Methods

As an example, we compared the “cradle to grave” environmental performance of four typical Brazilian residential buildings with different construction typologies, i.e., multi-dwelling and single dwelling, each with high and basic standards. We chose three types of FU for comparison: a dwelling with defined lifetime and occupancy parameters, an area of 1 m2 of dwelling over a year period, and the accommodation of an occupant person of the dwelling over a day.

Results and discussion

The FU choice was found to bias the results considerably. As expected, the largest global warming indicator (GWi) values per dwelling unit and occupant were identified for the high standard dwellings. However, when measured per square meter, lower standard dwellings presented the largest GWi values. This was caused by the greater concentration of people per square meter in smaller area dwellings, resulting in larger water and energy consumption per square meter. The sensitivity analysis of FU variables such as lifetime and occupancy showed the GWi contribution of the infrastructure more relevant compared with the operation in high and basic standard dwellings. The definition of lifetime and occupancy parameters is key to avoid bias and to reduce uncertainty of the results when performing a comparison of dwelling environmental performances.

Conclusions

This paper highlights the need for adequate choice and setting of FU to support intended decision-making in LCA studies of the building sector. The use of at least two FUs presented a broader picture of building performance, helping to guide effective environmental optimization efforts from different approaches and levels of analysis. Information regarding space, time, and service dimensions should be either included in the FU setting or provided in the building LCA study to allow adjustment of the results for subsequent comparison.

  相似文献   
2.

Purpose

Porcelain stoneware tile (PST) is currently the ceramic tile of greatest commercial and innovation interest. An environmental life cycle assessment of different varieties of PST was undertaken to enable hotspots to be identified, strategies to be defined, differences between PST varieties to be evaluated and guidance for PST manufacturers to be provided in choosing the Environmental Product Declaration (EPD) programme that best suited their needs according to grouping criteria.

Methods

Analysis of previous information allowed three main parameters (thickness, glaze content and mechanical treatment) to be identified in order to encompass all PST variations. Fifteen varieties of PST were thus studied. The coverage of 1 m2 of household floor surface with the different PST varieties for 50 years was defined as functional unit. The study sets out environmental data whose traceability was verified by independent third parties for obtaining 14 EPDs of PST under Spanish EPD programmes.

Results and discussion

The study presents PST inventory analysis and environmental impact over the entire life cycle of the studied PST varieties. The natural gas consumed in the manufacturing stage accounted for more than 70% abiotic depletion–fossil fuels and global warming; electricity consumption accounted for more than 60% ozone layer depletion, while the electricity generated by the cogeneration systems avoided significant environmental impacts in the Spanish power grid mix. The variations in PST thickness, amount of glaze and mechanical treatments were evaluated. The PST variety with the lowest environmental impact was the one with the lowest thickness, was unglazed and had no mechanical treatments. Similarly, the PST variety with the highest environmental impact was the one with the greatest thickness, was glazed and had been mechanically treated.

Conclusions

The PST life cycle stage with the highest environmental impact was the manufacturing stage. The main hotspots found were production and consumption of energy and raw materials extraction. Variation in thickness was a key factor that proportionally influenced almost all studied impact categories; the quantity of glaze strongly modified abiotic depletion–elements and eutrophication, while the mechanical treatments contributed mainly to ozone depletion. The study of all PST varieties led to the important conclusion, against the current trend, that differences among them were found to be so significant that declaring a number of PSTs within the same EPD is not directly possible, and it needs preliminary verification to ensure compliance with the product category rule.
  相似文献   
3.

Purpose

The year-round supply of fresh fruit and vegetables in Europe requires a complex logistics system. In this study, the most common European fruit and vegetable transport packaging systems, namely single-use wooden and cardboard boxes and re-useable plastic crates, are analyzed and compared considering environmental, economic, and social impacts.

Methods

The environmental, economic, and social potentials of the three transport packaging systems are examined and compared from a life cycle perspective using Life Cycle Assessment (LCA), Life Cycle Costing (LCC) and Life Cycle Working Environment (LCWE) methodologies. Relevant parameters influencing the results are analyzed in different scenarios, and their impacts are quantified. The underlying environmental analysis is an ISO 14040 and 14044 comparative Life Cycle Assessment that was critically reviewed by an independent expert panel.

Results and discussion

The results show that wooden boxes and plastic crates perform very similarly in the Global Warming Potential, Acidification Potential, and Photochemical Ozone Creation Potential categories; while plastic crates have a lower impact in the Eutrophication Potential and Abiotic Resource Depletion Potential categories. Cardboard boxes show the highest impacts in all assessed categories. The analysis of the life cycle costs show that the re-usable system is the most cost effective over its entire life cycle. For the production of a single crate, the plastic crates require the most human labor. The share of female employment for the cardboard boxes is the lowest. All three systems require a relatively large share of low-qualified employees. The plastic crate system shows a much lower lethal accident rate. The higher rate for the wooden and cardboard boxes arises mainly from wood logging. In addition, the sustainability consequences due to the influence of packaging in preventing food losses are discussed, and future research combining aspects both from food LCAs and transport packing/packaging LCAs is recommended.

Conclusions

For all three systems, optimization potentials regarding their environmental life cycle performance were identified. Wooden boxes (single use) and plastic crates (re-usable) show preferable environmental performance. The calibration of the system parameters, such as end-of-life treatment, showed environmental optimization potentials in all transport packaging systems. The assessment of the economic and the social dimensions in parallel is important in order to avoid trade-offs between the three sustainability dimensions. Merging economic and social aspects into a Life Cycle Assessment is becoming more and more important, and their integration into one model ensures a consistent modeling approach for a manageable effort.  相似文献   
4.

Background, aim, and scope  

This paper presents the results of the LCA of wine production in the region of La Rioja (Spain). The aim of this study was twofold: to identify the most critical life cycle stages of an aged Spanish wine from the point of view of the associated environmental impacts and to compare its environmental performance with that of other wines and beers for which comparable information could be found in the scientific literature. All the product’s life cycle stages were accounted for, namely: grapes cultivation (viticulture), wine making and bottling, distribution and sales, and disposal of empty bottles.  相似文献   
5.

Purpose

The objective of the paper is to discuss the role of a new guidance document for life cycle assessment (LCA) in the construction sector available as an online InfoHub.

Methods

This InfoHub derives from the EeBGuide European project that aimed at developing a guidance document for energy-efficient building LCA studies. The InfoHub is built on reference documents such as the ISO 14040-44 standards, the EN 15804 and EN 15978 standards as well as the ILCD Handbook. The guidance document was filled with expertise and knowledge of several experts. The focus was put on providing scientifically sound, yet practical guidance.

Results

The EeBGuide InfoHub is an online guidance document, setting rules for conducting LCA studies and giving instructions on how to do this. The document has a section on buildings—new and existing—and a section on construction products. It is structured according to the life cycle stages of the European standards EN 15804 and EN 15978, covering all aspects of LCA studies by applying provisions from these standards and the ILCD handbook, wherever applicable. The guidance is presented for different scopes of studies by means of three study types. For the same system boundaries, default values are proposed in early or quick assessment (screening and simplified LCA) while detailed calculation rules correspond to a complete LCA. Such approach is intended to better match the user needs in the building sector.

Conclusions and recommendations

This paper can be viewed as a contribution to the ongoing efforts to improve the consistency and harmonisation in LCA studies for building products and buildings. Further contributions are now needed to improve building LCA guidance and to strengthen links between research, standardisation and implementation of LCA in the construction practice.  相似文献   
6.
The International Journal of Life Cycle Assessment - The main purpose of this article is to assess the nutritional and economic efficiency of food loss and waste (FLW) along the supply of 13 food...  相似文献   
7.

Background, aim and scope  

In spite of a number of lingering issues, life cycle assessment (LCA) is widely recognised as one of the most powerful tools to investigate the environmental performance of a product or service. Carbon footprint (CF) analysis can also be considered a subset of LCA, limited to a single impact category (i.e. global warming potential (GWP)). However, the inherent complexity of a full LCA or CF analysis often stands in the way of their widespread application in the industry and policy-making sectors. For these latter ambits, this paper advocates the adoption of tailor-made streamlined approaches, with reduced inventory requirements and impact assessment scope. Two such examples are provided, respectively addressing the evaluation of GWP in the development of new product standards and the GWP savings attainable through the use of recycled materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号