首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   6篇
  2008年   9篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2000年   4篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有73条查询结果,搜索用时 31 毫秒
1.
Treatment of patients diagnosed as schizophrenic with antipsychotic drugs (neuroleptics) is known to cause occasional unexplained depletion of white blood cells, especially neutrophil granulocytes. It has been known for many years that neuroleptics can interfere with the mitochondrial respiratory chain in vitro. Because there has been a growing interest recently in mitochondrial targeting of drugs, and since a quantitative structure-activity relationship (QSAR) model that predicts mitochondrial accumulation of neuroleptics has been published, we investigated the effects of neuroleptics on white blood cell mitochondria. Venous blood samples were collected from both patients undergoing treatment with neuroleptics and healthy volunteers. The samples were processed for transmission electron microscopy. The resulting images of white blood cells were analyzed using stereology to compare quantitatively mitochondrial morphology in the patient and control groups. We found that in patients, but not in controls, there was swelling of mitochondria and fragmentation of the mitochondrial cristae. There also were fewer mitochondria in patients than in controls, although due to the swelling of the organelles, the volume density of mitochondria in the two groups was not significantly different. Such changes are typical of a toxic insult. Consequently, it seems plausible that, since schizophrenia is not a disease considered to affect white blood cells per se, these changes probably are due to the medication.  相似文献   
2.
The Rhodnius prolixus aggregation inhibitor 1 (RPAI-1) is a novel blood-sucking salivary molecule that binds to ADP and attenuates platelet aggregation. In this report, we determine the binding constants and specificity of RPAI-1 for adenine nucleotides and its functional significance. By the Hummel-Dreyer method of equilibrium gel filtration, we show that RPAI-1 binds ADP with a K(0.5) of 48.6 plus minus 12.2 nM. RPAI-1 also displays high-affinity binding to ATP, AMP, Ado, AP4A, and alpha,beta Met ADP; however, RPAI-1 does not bind to inosine, guanosine, uridine, or cytidine. Binding is not modified by EDTA, indicating that Ado structure but not phosphate groups or Ca(2+) is necessary for binding. By computer simulation, we show that RPAI-1 is more effective in scavenging low but not high concentrations of ADP, in contrast to R. prolixus apyrase. RPAI-1 inhibits in vitro the ADP-dependent platelet-rich plasma aggregation by collagen (COLL), TRAP, PAF, and A23187 but did not block platelet aggregation by ristocetin or phorbol myristate acetate (PMA) and only slightly attenuated that by convulxin. RPAI-1 prolongs the closure time as assessed with PFA-100, when COLL-Epi but not COLL-ADP cartridges are employed. RPAI-1 also affects platelet-mediated hemostasis time and COLL-induced thrombus formation at high shear as assessed with the Clot Signature Analyzer. We conclude that RPAI-1 exerts an antiplatelet effect due to scavenging of low concentrations of ADP in vitro and in vivo. RPAI-1 is the first lipocalin described so far with unique specificity for adenine nucleotides.  相似文献   
3.
Insulin improves contractile function after ischemia, but does not increase glucose uptake in the isolated working rat heart. We tested the hypothesis that the positive inotropic effect of insulin is independent of the signaling pathway responsible for insulin-stimulated glucose uptake. We inhibited this pathway at the level of phosphatidyl inositol 3-kinase (PI3K) with wortmannin. Hearts were perfused for 70 min at physiological workload with Krebs-Henseleit buffer containing [2-3H] glucose (5 mM, 0.05 Ci/ml) and oleate (0.4 mM, 1% BSA) in the presence (WM, n = 5) or absence (control, n = 7) of wortmannin (WM, 3 mol/L). After 20 min, hearts were subjected to 15 min of total global ischemia followed by 35 min of reperfusion. Insulin (1 mU/ml) was added at the beginning of reperfusion (WM + insulin n = 8, insulin n = 8). Cardiac power before ischemia was 8.1 ± 0.7 mW. Recovery of contractile function after ischemia was significantly increased in the presence of insulin (73.5 ± 8.9% vs. 38.5 ± 6.7%, p < 0.01). The addition of wortmannin completely abolished the effect of insulin on recovery (32.6 ± 6.4%). Glucose uptake was 1.84 ± 0.32 mol/min/g dry before ischemia and was slightly elevated during reperfusion (2.68 ± 0.35 mol/min/g dry, n.s.). Insulin did not affect postischemic glucose uptake. In the presence of wortmannin, glucose uptake was lowest during reperfusion (n.s.). The results suggest that PI3K is involved in the insulin-induced improvement in postischemic recovery of contractile function. This effect of insulin is independent of its effect on glucose uptake.  相似文献   
4.
The venom of eight individual Crotalus durissus terrificus snakes from the State of Minas Gerais, Brazil, in addition to pooled venom from Butantan Institute, were compared. Snakes were captured in distinct locations, some of them 600 km apart: Conselheiro Lafaiete, Entre Rios de Minas, Itauna, Itapecerica, Lavras, Patos de Minas, Paracatu, and Santo Antonio do Amparo. The crude venoms were tested for proteolytic, phospholipase A2, platelet aggregating, and hemagglutinating activities. The venoms were also analyzed by polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing (IEF). Chromatographic patterns of venom proteins on both gel-filtration and anion-exchange chromatographies were also performed. All venoms presented high phospholipase A2 and platelet-aggregating activities, but only minimal hemagglutinating or proteolytic activities were found. Gel-filtration chromatography showed a characteristic profile for most venoms where four main peaks were separated, including the typical ones where convulxin and crotoxin were identified; however, peaks with high amounts of lower molecular weight proteins were found in the venoms from the Santo Antonio do Amparo location and Butantan Institute, characterizing these venoms as crotamine positive. Anion-exchange chromatographies presented a similar protein distribution pattern, although the number of peaks (up to ten) distinguished some venom samples. Consistent with these results, polyacrylamide gels that were silver stained after venom separation by PAGE or IEF presented a similar qualitative band distribution, although a quantitative heterogeneity was detected among venoms. Our results suggest that the variability found in venom components of C. d. terrificus venoms captured in Minas Gerais State may be genetically inherited and/or environmentally induced.  相似文献   
5.
Rhodnius prolixus aggregation inhibitor 1 (RPAI-1), a 19-kDa protein isolated from the salivary gland of R. prolixus, was purified by strong cation exchange and reverse-phase high performance liquid chromatographies. Based on 49 amino-terminal amino acid sequences of RPAI-1, primers were produced to generate probes to screen an R. prolixus salivary gland cDNA library. A phage containing the full-length clone of RPAI-1 codes for a mature protein of 155 amino acids. RPAI-1 shows sequence homology to triabin and pallidipin, lipocalins from Triatoma pallidipennis. The cDNA sequence was cloned in Pet17B Escherichia coli expression vector, producing an active peptide. RPAI-1 inhibits human platelet-rich plasma aggregation triggered by low concentrations of ADP, collagen, arachidonic acid, thromboxane A(2) mimetics (U46619), and very low doses of thrombin and convulxin. Here we show that ADP is the target of RPAI-1 since (i) RPAI-1 inhibits ADP-dependent large aggregation formation and secretion triggered by U46619, without affecting Ca(2+) increase and shape change; (ii) ADP restored the inhibition of U46619-induced platelet aggregation by RPAI-1, (iii) PGE(1)-induced increase of cAMP (which is antagonized by U46619 in an ADP-dependent manner) was restored by RPAI-1, (iv) RPAI-1 inhibits low concentrations of ADP-mediated responses of indomethacin-treated platelets, and (v) RPAI-1 binds to ADP, as assessed by large zone chromatography. RPAI-1 affects neither integrin alpha(2)beta(1)- nor glycoprotein VI-mediated platelet responses. We conclude that RPAI-1 is the first lipocalin described that inhibits platelet aggregation by a novel mechanism, binding to ADP.  相似文献   
6.
7.
Tick saliva is thought to contain a number of molecules that prevent host immune and inflammatory responses. In this study, the effects of Ixodes scapularis saliva on cytokine production by bone marrow-derived dendritic cells (DCs) from C57BL/6 mice stimulated by TLR-2, TLR-4, and TLR-9 ligands were studied. Saliva at remarkably diluted concentrations (<1/2000) promotes a dose-dependent inhibition of IL-12 and TNF-alpha production induced by all TLR ligands used. Using a combination of fractionation techniques (microcon filtration, molecular sieving, and reversed-phase chromatography), we unambiguously identified PGE(2) as the salivary inhibitor of IL-12 and TNF-alpha production by DCs. Moreover, we have found that I. scapularis saliva (dilution 1/200; approximately 10 nM PGE(2)) marginally inhibited LPS-induced CD40, but not CD80, CD86, or MHC class II expression. In addition, saliva significantly suppressed the ability of DCs to stimulate Ag-specific CD4(+) T cell proliferation and IL-2 production. Notably, the effect of saliva on DC maturation and function was reproduced by comparable concentrations of standard PGE(2). These findings indicate that PGE(2) accounts for most inhibition of DC function observed with saliva in vitro. The role of salivary PGE(2) in vector-host interaction and host immune modulation and inflammation in vivo is also discussed. This study is the first to identify molecularly a DC inhibitor from blood-sucking arthropods.  相似文献   
8.
9.
Triggering receptor expressed on myeloid cells-2 (TREM-2) is rapidly emerging as a key regulator of the innate immune response via its regulation of macrophage inflammatory responses. Here we demonstrate that proximal TREM-2 signaling parallels other DAP12-based receptor systems in its use of Syk and Src-family kinases. However, we find that the linker for activation of T cells (LAT) is severely reduced as monocytes differentiate into macrophages and that TREM-2 exclusively uses the linker for activation of B cells (LAB encoded by the gene Lat2−/−) to mediate downstream signaling. LAB is required for TREM-2-mediated activation of Erk1/2 and dampens proximal TREM-2 signals through a novel LAT-independent mechanism resulting in macrophages with proinflammatory properties. Thus, Lat2−/− macrophages have increased TREM-2-induced proximal phosphorylation, and lipopolysaccharide stimulation of these cells leads to increased interleukin-10 (IL-10) and decreased IL-12p40 production relative to wild type cells. Together these data identify LAB as a critical, LAT-independent regulator of TREM-2 signaling and macrophage development capable of controlling subsequent inflammatory responses.  相似文献   
10.
Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号