首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   5篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   4篇
  2004年   3篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1994年   2篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
Fiber-degrading systems of different strains of the genus Fibrobacter   总被引:1,自引:0,他引:1  
The S85 type strain of Fibrobacter succinogenes, a major ruminal fibrolytic species, was isolated 49 years ago from a bovine rumen and has been used since then as a model for extensive studies. To assess the validity of this model, we compared the cellulase- and xylanase-degrading activities of several other F. succinogenes strains originating from different ruminants, including recently isolated strains, and looked for the presence of 10 glycoside hydrolase genes previously identified in S85. The NR9 F. intestinalis type strain, representative of the second species of the genus, was also included in this study. DNA-DNA hybridization and 16S rRNA gene sequencing first classified the strains and provided the phylogenetic positions of isolates of both species. Cellulase and xylanase activity analyses revealed similar activity profiles for all F. succinogenes strains. However, the F(E) strain, phylogenetically close to S85, presented a poor xylanolytic system and weak specific activities. Furthermore, the HM2 strain, genetically distant from the other F. succinogenes isolates, displayed a larger cellulolytic profile on zymograms and higher cellulolytic specific activity. F. intestinalis NR9 presented a higher cellulolytic specific activity and a stronger extracellular xylanolytic activity. Almost all glycoside hydrolase genes studied were found in the F. succinogenes isolates by PCR, except in the HM2 strain, and few of them were detected in F. intestinalis NR9. As expected, the fibrolytic genes of strains of the genus Fibrobacter as well as the cellulase and xylanase activities are better conserved in closely related phylogenetic isolates.  相似文献   
2.
Fibrobacter succinogenes S85, a cellulolytic rumen bacterium, is very efficient in degrading lignocellulosic substrates and could be used to develop a biotechnological process for the treatment of wastes. In this work, the metabolism of cellulose by F. succinogenes S85 was investigated using in vivo 13C NMR and 13C-filtered spin-echo difference 1H NMR spectroscopy. The degradation of unlabelled cellulose synthesised by Acetobacter xylinum was studied indirectly, in the presence of [1-13C]glucose, by estimating the isotopic dilution of the final bacterial fermentation products (glycogen, succinate, acetate). During the pre-incubation period of F. succinogenes cells with cellulose fibres, some cells ('non-adherent') did not attach to the solid material. Results for 'adherent' cells showed that about one fourth of the glucose units entering F. succinogenes metabolism originated from cellulose degradation. A huge reversal of succinate metabolism pathway and production of large amounts of unlabelled acetate which was observed during incubation with glucose only, was found to be much decreased in the presence of solid substrate. The synthesis of glucose 6-phophate was slightly increased in the presence of cellulose. Results clearly showed that 'non-adherent' cells were able to metabolise glucose very efficiently; consequently the metabolic state of these cells was not responsible for their 'non-adherence' to cellulose fibre.  相似文献   
3.
We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics.  相似文献   
4.
We investigated the influence of the composition of the fibrolytic microbial community on the development and activities of hydrogen-utilizing microorganisms in the rumens of gnotobiotically reared lambs. Two groups of lambs were reared. The first group was inoculated with Fibrobacter succinogenes, a non-H(2)-producing species, as the main cellulolytic organism, and the second group was inoculated with Ruminococcus albus, Ruminococcus flavefaciens, and anaerobic fungi that produce hydrogen. The development of hydrogenotrophic bacterial communities, i.e., acetogens, fumarate and sulfate reducers, was monitored in the absence of methanogens and after inoculation of methanogens. Hydrogen production and utilization and methane production were measured in rumen content samples incubated in vitro in the presence of exogenous hydrogen (supplemented with fumarate or not supplemented with fumarate) or in the presence of ground alfalfa hay as a degradable substrate. Our results show that methane production was clearly reduced when the dominant fibrolytic species was a non-H(2)-producing species, such as Fibrobacter succinogenes, without significantly impairing fiber degradation and fermentations in the rumen. The addition of fumarate to the rumen contents stimulated H(2) utilization only by the ruminal microbiota inoculated with F. succinogenes, suggesting that these communities could play an important role in fumarate reduction in vivo.  相似文献   
5.
Microbial ecosystem and methanogenesis in ruminants   总被引:1,自引:0,他引:1  
Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2 and CO2 as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen ('H2' from this point on) is the key element that drives methane production in the rumen. Among H2 producers, protozoa have a prominent position, which is strengthened by their close physical association with methanogens, which favours H2 transfer from one to the other. A strong positive interaction was found between protozoal numbers and methane emissions, and because this group is possibly not essential for rumen function, protozoa might be a target for methane mitigation. An important function that is associated with production of H2 is the degradation of fibrous plant material. However, not all members of the rumen fibrolytic community produce H2. Increasing the proportion of non-H2 producing fibrolytic microorganisms might decrease methane production without affecting forage degradability. Alternative pathways that use electron acceptors other than CO2 to oxidise H2 also exist in the rumen. Bacteria with this type of metabolism normally occupy a distinct ecological niche and are not dominant members of the microbiota; however, their numbers can increase if the right potential electron acceptor is present in the diet. Nitrate is an alternative electron sinks that can promote the growth of particular bacteria able to compete with methanogens. Because of the toxicity of the intermediate product, nitrite, the use of nitrate has not been fully explored, but in adapted animals, nitrite does not accumulate and nitrate supplementation may be an alternative under some dietary conditions that deserves to be further studied. In conclusion, methanogens in the rumen co-exist with other microbes, which have contrasting activities. A better understanding of these populations and the pathways that compete with methanogenesis may provide novel targets for emissions abatement in ruminant production.  相似文献   
6.
AIM: To examine the effect of concentrate and yeast additive on the number of cellulolytic bacteria in the rumen of sheep. METHODS AND RESULTS: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens were quantified using real-time PCR (targeting 16S rDNA) in parallel to cellulolytic flora enumeration with cultural techniques. Whatever the conditions tested, R. flavefaciens was slightly more abundant than F. succinogenes, with both species outnumbering R. albus. Before feeding, the shift from hay to hay plus concentrate diet had no effect on rumen pH and on the number of the three specie; while after feeding, the concentrate-supplemented diet induced a decrease (-1 log) of the number of the three species concomitant with the rumen acidification. Overall, the presence of the live yeast resulted in a significant increase (two- to fourfold) of the Ruminococci. CONCLUSION: The use of real-time PCR allowed us to show changes in the number of cellulolytic bacterial species in vivo in response to diet shift and additives that could not be as easily evidenced by classical microbial methods. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributes to the understanding of the negative impact of readily fermentable carbohydrates on rumen cellulolysis and the beneficial effect of yeast on rumen fermentation.  相似文献   
7.
8.
Ruminococcus albus is a Gram-positive bacterium that degrades plant cell walls in the rumen of herbivores. It was described to synthesize two major glycoside-hydrolases (Cel9B and Cel48A), which are exported and anchored at the cell surface. In bacteria, proteins destined to cross the cytoplasmic membrane are synthesized as precursors and possess a signal sequence (SS) directing them to the 'Sec' (general secretory) or 'Tat' (twin arginine translocation) pathway. SS composition of Cel9B and Cel48A suggests that these two enzymes translocate using different secretory pathways. In order to confirm this hypothesis, the SSs of Cel9B and Cel48A were fused to the green fluorescent protein (GFP) and expressed in wild-type Escherichia coli and in its Tat and Sec isogenic mutants. The SS cleavage and the formation of the mature protein were then followed by Western blot and fluorescence microscopy. This study shows that the SS of Cel9B directs the preprotein to the 'Tat' translocation pathway while the GFP fused to the SS of Cel48A is exported through the 'Sec' machinery. These observations suggest that R. albus possess a Tat pathway, in addition to the general secretory pathway.  相似文献   
9.
Extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, cellulose or wheat straw was analysed by 2D-NMR spectroscopy. Cellodextrins did not accumulate in the culture medium of cells grown on cellulose or straw. Maltodextrins and maltodextrin-1P were identified in the culture medium of glucose, cellobiose and cellulose grown cells. New glucose derivatives were identified in the culture fluid under all the substrate conditions. In particular, a compound identified as cellobionic acid accumulated at high levels in the medium of F. succinogenes S85 cultures. The production of cellobionic acid (and cellobionolactone also identified) was very surprising in an anaerobic bacterium. The results suggest metabolic shifts when cells were growing on solid substrate cellulose or straw compared to soluble sugars.  相似文献   
10.
We report for the first time the cloning and characterisation of a protozoal enzyme involved in plant cell wall polysaccharide degradation. A cDNA library was constructed from the ruminal protozoan Polyplastron multivesiculatum and a stable clone expressing xylanase activity was isolated. The encoded enzyme belongs to the glycoside hydrolase family 11, and phylogenetic analysis indicates a closer relationship with catalytic domains from Gram-positive bacteria than the other fibrolytic eukaryotes from the rumen, the anaerobic fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号