首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   7篇
  2020年   1篇
  2019年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Tim44 is a protein of the mitochondrial inner membrane and serves as an adaptor protein for mtHsp70 that drives the import of preproteins in an ATP-dependent manner. In this study we have modified the interaction of Tim44 with mtHsp70 and characterized the consequences for protein translocation. By deletion of an 18-residue segment of Tim44 with limited similarity to J-proteins, the binding of Tim44 to mtHsp70 was weakened. We found that in the yeast Saccharomyces cerevisiae the deletion of this segment is lethal. To investigate the role of the 18-residue segment, we expressed Tim44Delta18 in addition to the endogenous wild-type Tim44. Tim44Delta18 is correctly targeted to mitochondria and assembles in the inner membrane import site. The coexpression of Tim44Delta18 together with wild-type Tim44, however, does not stimulate protein import, but reduces its efficiency. In particular, the promotion of unfolding of preproteins during translocation is inhibited. mtHsp70 is still able to bind to Tim44Delta18 in an ATP-regulated manner, but the efficiency of interaction is reduced. These results suggest that the J-related segment of Tim44 is needed for productive interaction with mtHsp70. The efficient cooperation of mtHsp70 with Tim44 facilitates the translocation of loosely folded preproteins and plays a crucial role in the import of preproteins which contain a tightly folded domain.  相似文献   
2.
3.
The essential yeast gene MPI1 encodes a mitochondrial membrane protein that is possibly involved in protein import into the organelle (A. C. Maarse, J. Blom, L. A. Grivell, and M. Meijer, EMBO J. 11:3619-3628, 1992). For this report, we determined the submitochondrial location of the MPI1 gene product and investigated whether it plays a direct role in the translocation of preproteins. By fractionation of mitochondria, the mature protein of 44 kDa was localized to the mitochondrial inner membrane and therefore termed MIM44. Import of the precursor of MIM44 required a membrane potential across the inner membrane and involved proteolytic processing of the precursor. A preprotein in transit across the mitochondrial membranes was cross-linked to MIM44, whereas preproteins arrested on the mitochondrial surface or fully imported proteins were not cross-linked. When preproteins were arrested at two distinct stages of translocation across the inner membrane, only preproteins at an early stage of translocation could be cross-linked to MIM44. Moreover, solubilized MIM44 was found to interact with in vitro-synthesized preproteins. We conclude that MIM44 is a component of the mitochondrial inner membrane import machinery and interacts with preproteins in an early step of translocation.  相似文献   
4.
The six small subunits (IV-VII, VIIa, VIII) of yeast cytochrome c oxidase are encoded by nuclear genes and imported into the mitochondria. We have isolated the gene for subunit IV from a yeast genomic clone bank and determined its complete nucleotide sequence. We have also isolated subunit IV from purified yeast cytochrome c oxidase and determined most of its amino acid sequence which confirms the positioning of approximately 90% of the amino acid residues. The sequence comparison shows that the coding sequence of the gene lacks introns and that subunit IV is made as a precursor with an amino-terminal extension of 25 residues, five of which are basic and none of them acidic. Precursor processing involves cleavage of a Leu-Gln bond.  相似文献   
5.
A P van Loon  A C Maarse  H Riezman  L A Grivell 《Gene》1983,26(2-3):261-272
Cloning and mapping of the yeast nuclear genes for the core II (Mr 40 000) and Rieske iron-sulphur proteins of the mitochondrial ubiquinol-cytochrome c reductase, and comparison with the genomic regions in nuclear DNA from which they are derived, show that the genes are likely to be present in single copies and that they are not closely linked. They have been reintroduced into yeast cells on multi-copy plasmids and, similar to results obtained for the Mr 11 000 subunit [Van Loon et al., EMBO J. 2 (1983) 1765-1770], increase in the dosage of either gene prompts discoordinate synthesis of the encoded protein. Quantitative analysis of transformants carrying extra copies of the gene for the iron-sulphur protein shows that messenger RNA level, rate of synthesis and steady-state concentration of the protein correlate well with each other. This indicates that its level, in contrast to that of the Mr 11 000 subunit, is only determined by the concentration of its messenger RNA. Over-production of these proteins does not interfere with mitochondrial function as judged from growth rates of transformed cells on non-fermentable media. The excess Mr 40 000 protein is imported into the mitochondrion, showing that import of this subunit is not obligatorily coupled to complex assembly.  相似文献   
6.
The protein transport machinery of the inner mitochondrial membrane contains three essential Tim proteins. Tim17 and Tim23 are thought to build a preprotein translocation channel, while Tim44 transiently interacts with the matrix heat shock protein Hsp70 to form an ATP-driven import motor. For this report we characterized the biogenesis and interactions of Tim proteins. (i) Import of the precursor of Tim44 into the inner membrane requires mtHsp70, whereas import and inner membrane integration of the precursors of Tim17 and Tim23 are independent of functional mtHsp70. (ii) Tim17 efficiently associates with Tim23 and mtHsp70, but only weakly with Tim44. (iii) Depletion of Tim44 does not affect the co-precipitation of Tim17 with antibodies directed against mtHsp70. (iv) Tim23 associates with both Tim44 and Tim17, suggesting the presence of two Tim23 pools in the inner membrane, a Tim44-Tim23-containing sub-complex and a Tim23-Tim17-containing sub-complex. (v) The association of mtHsp70 with the Tim23-Tim17 sub-complex is ATP sensitive and can be distinguished from the mtHsp70-Tim44 interaction by the differential influence of an amino acid substitution in mtHsp70. (vi) Genetic evidence, suppression of the protein import defect of a tim17 yeast mutant by overexpression of mtHsp70 and synthetic lethality of conditional mutants in the genes of Tim17 and mtHsp70, supports a functional interaction of mtHsp70 with Tim17. We conclude that the protein transport machinery of the mitochondrial inner membrane consists of dynamically interacting sub-complexes, each of which transiently binds mtHsp70.  相似文献   
7.
A C Maarse  J Blom  L A Grivell    M Meijer 《The EMBO journal》1992,11(10):3619-3628
To identify components of the mitochondrial protein import pathway in yeast, we have adopted a positive selection procedure for isolating mutants disturbed in protein import. We have cloned and sequenced a gene, termed MPI1, that can rescue the genetic defect of one group of these mutants. MPI1 encodes a hydrophilic 48.8 kDa protein that is essential for cell viability. Mpi1p is a low abundance and constitutively expressed mitochondrial protein. Mpi1p is synthesized with a characteristic mitochondrial targeting sequence at its amino-terminus, which is most probably proteolytically removed during import. It is a membrane protein, oriented with its carboxy-terminus facing the intermembrane space. In cells depleted of Mpi1p activity, import of the precursor proteins that we tested thus far, is arrested. We speculate that the Mpi1 protein is a component of a proteinaceous import channel for translocation of precursor proteins across the mitochondrial inner membrane.  相似文献   
8.
The essential gene TIM44 encodes a subunit of the inner mitochondrial membrane preprotein translocase that forms a complex with the matrix heat-shock protein Hsp70. The specific role of Tim44 in protein import has not yet been defined because of the lack of means to block its function. Here we report on a Saccharomyces cerevisiae mutant allele of TIM44 that allows selective and efficient inactivation of Tim44 in organello. Surprisingly, the mutant mitochondria are still able to import preproteins. The import rate is only reduced by approximately 30% compared with wild-type as long as the preproteins do not carry stably folded domains. Moreover, the number of import sites is not reduced. However, the mutant mitochondria are strongly impaired in pulling folded domains of preproteins close to the outer membrane and in promoting their unfolding. Our results demonstrate that Tim44 is not an essential structural component of the import channel, but is crucial for import of folded domains. We suggest that the concerted action of Tim44 and mtHsp70 drives unfolding of preproteins and accelerates translocation of loosely folded preproteins. While mtHsp70 is essential for import of both tightly and loosly folded preproteins, Tim44 plays a more specialized role in translocation of tightly folded domains.  相似文献   
9.
Both disturbance history and disturbance type act to structure communities through selecting for particular species traits but they may also interact. For example, flooding selects for species with flood‐resistant traits in streams, but those traits could make communities susceptible to other disturbances and so could cause shifts in community composition due to anthropogenic climate change. To better understand the interactive influences of disturbance history and type on community composition, we investigated the response of macroinvertebrate communities to disturbance using in‐stream channels. Using a split‐plot design, individual channels in five ‘stable’ streams and five ‘frequently disturbed’ streams (disturbance history) were subject to different disturbance type treatments (flooding, drying and a control). Disturbance type independently drove effects on species diversity, but all other effects of disturbance type depended on disturbance history. In particular, the interaction of disturbance type and history determined overall community response. Both disturbance types tested produced similar community responses in frequently disturbed streams, including changes in community composition and alterations to the abundance of less mobile taxa, but low‐flow had a significantly greater effect in stable streams. Macroinvertebrate drift was greatest in the rock‐rolling treatments and significantly less in the low‐flow treatment for both disturbance histories. Therefore, disturbance history moderated the effects of disturbance type and determined the mechanism of community response by determining how well species were adapted to disturbance. This outcome suggests that previous disturbances strongly influence how vulnerable communities are to changes in disturbance, and so should be considered when predicting how changes in disturbance regimes will affect future community composition.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号