首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   7篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   6篇
  1999年   15篇
  1998年   6篇
  1997年   5篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1976年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
Monoclonal antibodies generated by immunization with a plasma-membrane preparation from suspension-cultured cells of Nicotiana glutinosa L. were used in combination with fluoresceinor rhodamine-labeled goat anti-mouse immunoglobulins to identify heterokaryons in protoplast fusion procedures. Antibody labeling did not inhibit callus formation nor plantlet regeneration. The antibodies are non-invasive and surface labeling provides clear optical discrimination of true heterokaryons from unfused aggregates as well as from parental protoplasts and homokaryons. Labeling is stable throughout fusion and hence by pre-labeling parental protoplast populations the strategy is both versatile and of general applicability.  相似文献   
2.
A. H. Fitter 《Oecologia》1986,69(4):594-599
Summary The time and depth of activity of a number of co-existing grassland plants was measured using a technique involving the simultaneous injection to different depths in soil of 3 chemical tracers — Li, Rb and Sr. Root activity at a particular depth was assessed from the concentration of each tracer in leaf tissue.The seven most constant species showed very similar patterns of root activity, which was greater at 5 than at 15 or 25 cm except towards the end of the growth period in late June. Maximum root activity generally occurred earlier than maximum shoot productivity but there was little evidence of differentiation between species. When root activity was assessed as a proportion of total community root activity, by combining tracer concentration and biomass data, seasonal differences between species were more obvious. Using both root activity and productivity data, species were grouped into two main guilds, one active in spring (April-May) and one in summer (June).Correlations of above-ground biomass with root activity at different depths revealed that species of the spring guild were more active in the 5–15 cm horizons and those of the summer guild at 15–25 cm.These patterns suggest that rooting depth and time of activity are strongly linked: early-active species tend to be less productive and shallower-rooted and this combination of characters allows them to escape from competition with more productive species, by being active at a time when deeper soil layers are less hospitable.  相似文献   
3.
Murine monoclonal antibodies to membrane antigens were generated by immunization with a crude cellular membrane preparation from suspension-cultured cells of Nicotiana glutinosa L. From a panel of thirteen monoclonal antibodies, seven were found to be directed against antigens present on the plasma-membrane by immunofluorescence visualization of antibody binding to the surface of isolated protoplasts. The corresponding set of plasma-membrane antigen(s) were present in root, shoot and leaf tissue and some but not all of these antigens were of wide species distribution, being found in Nicotiana tabacum L., N. plumbaginifolia L., Glycine max L., Phaseolus vulgaris L. and Triticum aestivum L. Topologically specific labeling of intact protoplasts with a monoclonal antibody reactive with an epitope present on the plasma-membrane specifically labeled a membrane fraction which equilibrated at a density of 1.14 kg/l following centrifugation in a sucrose gradient. In addition to use as biochemical markers for fractionation and molecular characterization of plasma-membranes, these monoclonal antibodies provide the basis for new selection tools in plant cell and gene manipulations.  相似文献   
4.
Worldwide the majority of current proposals to release genetically modified organisms concern plants; most are for small changes in common crop plants and present little apparent hazard. However, there is much confusion about how plants become pests, and implausible risk factors are appearing in the literature and before committees. It is dangerous to estimate the risks from first principles because of the immaturity of plant population biology and the lack of empirical data. Regulatory agencies should concentrate on obtaining realistic assessment of hazards, and not attempt to balance notional benefits and disbenefits.  相似文献   
5.
6.
Proper insertion, folding and assembly of functional proteins in biological membranes are key processes to warrant activity of a living cell. Here, we present a novel approach to trace folding and insertion of a nascent membrane protein leaving the ribosome and penetrating the bilayer. Surface Enhanced IR Absorption Spectroscopy selectively monitored insertion and folding of membrane proteins during cell-free expression in a label-free and non-invasive manner. Protein synthesis was performed in an optical cell containing a prism covered with a thin gold film with nanodiscs on top, providing an artificial lipid bilayer for folding. In a pilot experiment, the folding pathway of bacteriorhodopsin via various secondary and tertiary structures was visualized. Thus, a methodology is established with which the folding reaction of other more complex membrane proteins can be observed during protein biosynthesis (in situ and in operando) at molecular resolution.  相似文献   
7.
Phosphate availability regulates root system architecture in Arabidopsis   总被引:31,自引:0,他引:31  
Plant root systems are highly plastic in their development and can adapt their architecture in response to the prevailing environmental conditions. One important parameter is the availability of phosphate, which is highly immobile in soil such that the arrangement of roots within the soil will profoundly affect the ability of the plant to acquire this essential nutrient. Consistent with this, the availability of phosphate was found to have a marked effect on the root system architecture of Arabidopsis. Low phosphate availability favored lateral root growth over primary root growth, through increased lateral root density and length, and reduced primary root growth mediated by reduced cell elongation. The ability of the root system to respond to phosphate availability was found to be independent of sucrose supply and auxin signaling. In contrast, shoot phosphate status was found to influence the root system architecture response to phosphate availability.  相似文献   
8.
Plantago lanceolata with or without the mycorrhizal fungus Glomus mosseae were grown over a 100 d period under ambient (38050 mol mol-1) and elevated (600150 mol mol-1) atmospheric CO2 conditions. To achieve similar growth, non-mycorrhizal plants received phosphorus in solution whereas mycorrhizal plants were supplied with bonemeal. Measures of plant growth, photosynthesis and carbon input to the soil were obtained. Elevated CO2 stimulated plant growth to the same extent in mycorrhizal and non0mycorrhizal plants, but had no effect on the partitioning of carbon between shoots and roots or on shoot tissue phosphorus concentration. Mycorrhizal colonization was low, but unaffected by CO2 treatment. Net photosynthesis was stimulated both by mycorrhizal colonization and elevated CO2, and there was a more than additive effect of the two treatments on net photosynthesis. Colonization by mycorrhizal fungi inhibited acclimation, in terms of net carbon assimilation, or plants to elevated CO2. 13C natural abundance techniques were used to measure carbon input into the soil, although the results were not conclusive. Direct measurements of below-ground root biomass showed that elevated CO2 did stimulate carbon flow below-ground and this was higher in mycorrhizal than non-mycorrhizal plants. For the four treatment combinations, the observed relative differences in amount of below-ground carbon were compared with those expected from the differences in net photosynthesis. A considerable amount of the extra carbon fixed both as a result of mycorrhizal colonization and growth in elevated CO2 did not reveal itself as increased plant biomass. As there was no evidence for a substantial increase in soil organic matter, most of this extra carbon must have been respired by the mycorrhizal fungus and the roots or by the plants as dark-respiration. The need for detailed studies in this area is emphasized.  相似文献   
9.
In situ (13)C pulse labelling was used to measure the temporal and spatial carbon flow through an upland grassland. The label was delivered as (13)C-CO(2) to vegetation in three replicate plots in each of two treatments: control and lime addition. Harvests occurred over a two month period and samples were taken along transects away from the label delivery area. The (13)C concentration of shoot, root, bulk soil, and soil-respired CO(2) was measured. There was no difference in the biomass and (13)C concentration of shoot and root material for the control and lime treatments meaning that the amount of (13)C-CO(2) assimilated by the vegetation and translocated below ground was the same in both treatments. The (13)C concentration of the bulk soil was lower in the lime treatment than in the control and, conversely, the (13)C concentration of the soil-respired CO(2) was higher in the lime. Unlike the difference in bulk soil (13)C concentration between treatments, the difference in the (13)C concentration of the soil-respired CO(2) was obvious only at the delivery site and primarily within 1 d after labelling. An observed increase in the abundance of mycorrhizal fungi in the lime treatment was a possible cause for this faster carbon throughput. The potential key role of mycorrhizas in the soil carbon cycle is discussed. The importance of a better understanding of soil processes, especially biological ones, in relation to the global carbon cycle and environmental change is highlighted.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号