首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   24篇
  2024年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   8篇
  2014年   4篇
  2013年   8篇
  2012年   4篇
  2011年   10篇
  2010年   9篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   3篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   8篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   8篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   5篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   6篇
  1982年   5篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1963年   1篇
  1962年   1篇
  1953年   1篇
  1939年   1篇
排序方式: 共有194条查询结果,搜索用时 48 毫秒
1.
Expression sites of genes encoding (13,14)--glucan 4-glucanohydrolase (EC 3.2.1.73) have been mapped in germinated barley grains (Hordeum vulgare L.) by hybridization histochemistry. A32P-labelled cDNA (copy DNA) probe was hybridized to cryosections of intact barley grains to localize complementary mRNAs. No mRNA encoding (13,14)--glucanase is detected in ungerminated grain. Expression of (13,14)--glucanase genes is first detected in the scutellum after 1 d and is confined to the epithelial layer. At this stage, no expression is apparent in the aleurone. After 2 d, levels of (13,14)--glucanase mRNA decrease in the scutellar epithelium but increase in the aleurone. In the aleurone layer, induction of (13,14)--glucanase gene expression, as measured by mRNA accumulation, progresses from the proximal to distal end of the grain as a front moving away from, and parallel to, the face of the scutellum.Abbreviations cDNA copy DNA - RNase ribonuclease  相似文献   
2.
Corpus luteum function, interoestrous interval and spontaneous uterine PGF-2 alpha (PGF) production were evaluated in 9 cyclic Holstein cows (3/group) after intrauterine injections of pooled conceptus secretory proteins, 5 beta-pregnan-3 alpha-ol-20-one, or homologous serum proteins on Days 15.5 through 21 after oestrus. A significant extension of corpus luteum lifespan and interoestrous interval were detected in cows treated with conceptus secretory proteins compared to the other 2 groups. CL lifespan and interoestrous interval were not different (P greater than 0.25) between 5 beta-pregnan-3 alpha-ol-20-one and control groups. Evaluation of spontaneous PGF responses suggested that proteins synthesized and secreted by the bovine conceptus accommodate luteal maintenance during early gestation via an attenuation of endometrial PGF production.  相似文献   
3.
Bacterial Utilization of Ether Glycols   总被引:9,自引:8,他引:1       下载免费PDF全文
A soil bacterium capable of using oligo- and polyethylene glycols and ether alcohols as sole sources of carbon for aerobic growth was isolated. The effects of substituent groups added to the ether bonds on the acceptability of the compounds as substrates were studied. Mechanisms for the incorporation of two-carbon compounds were demonstrated by the observation that acetate, glyoxylate, ethylene glycol, and a number of the tricarboxylic acid cycle intermediates served as growth substrates in minimal media. The rate of oxidation of the short-chained ethylene glycols by adapted resting cells varied directly with increasing numbers of two-carbon units in the chains from one to four. The amount of oxygen consumed per carbon atom of oligo- and polyethylene glycols was 100% of theoretical, but only 67% of theoretical for ethylene glycol. Resting cells oxidized oligo- and polyethylene glycols with 2 to 600 two-carbon units in the chains. Longer chained polyethylene glycols (up to 6,000) were oxidized at a very slow rate by these cells. Dehydrogenation of triethylene glycol by adapted cells was observed, coupling the reaction with methylene blue reduction.  相似文献   
4.
蚕豆植株叶片随茎节自上而下表现出明显的发育与衰老顺序,可作为衰老特征的是叶绿素和蛋白质含量明显下降。蚕豆叶中SOD活性主要定位于12 000× g离心后所得的上清液和叶绿体组分。衰老叶片的SOD总活性和叶绿体组分的相对活性都有所下降,SOD同工酶谱也发生了改变。O_2~ 产生速率随叶龄增大而稍上升;而MDA含量在叶片外观表现枯黄衰老征兆前就急剧上升。可能因为衰老叶片过氧化氢酶活性大幅度下降与SOD之间的不平衡,致使O_2~ 代谢中间产物累积而引起膜的损伤.  相似文献   
5.
A (13, 14)--glucan 4-glucanohydrolase [(13, 14)--glucanase, EC 3.2.1.73] was purified to homogeneity from extracts of germinated wheat grain. The enzyme, which was identified as an endohydrolase on the basis of oligosaccharide products released from a (13, 14)--glucan substrate, has an apparent pI of 8.2 and an apparent molecular mass of 30 kDa. Western blot analyses with specific monoclonal antibodies indicated that the enzyme is related to (13, 14)--glucanase isoenzyme EI from barley. The complete primary structure of the wheat (13, 14)--glucanase has been deduced from nucleotide sequence analysis of cDNAs isolated from a library prepared using poly(A)+ RNA from gibberellic acid-treated wheat aleurone layers. One cDNA, designated LW2, is 1426 nucleotide pairs in length and encodes a 306 amino acid enzyme, together with a NH2-terminal signal peptide of 28 amino acid residues. The mature polypeptide encoded by this cDNA has a molecular mass of 32085 and a predicted pI of 8.1. The other cDNA, designated LW1, carries a 109 nucleotide pair sequence at its 5 end that is characteristic of plant introns and therefore appears to have been synthesized from an incompletely processed mRNA. Comparison of the coding and 3-untranslated regions of the two cDNAs reveals 31 nucleotide substitutions, but none of these result in amino acid substitutions. Thus, the cDNAs encode enzymes with identical primary structures, but their corresponding mRNAs may have originated from homeologous chromosomes in the hexaploid wheat genome.  相似文献   
6.
The evolutionary relationships of two classes of plant β-glucan endohydrolases have been examined by comparison of their substrate specificities, their three-dimensional conformations and the structural features of their corresponding genes. These comparative studies provide compelling evidence that the (1→3)-β-glucanases and (1→3,1→4)-β-glucanases from higher plants share a common ancestry and, in all likelihood, that the (1→3,1→4)-β-glucanases diverged from the (1→3)-β-glucanases during the appearance of the graminaceous monocotyledons. The evolution of (1→3,1→4)-β-glucanases from (1→3)-β-glucanases does not appear to have invoked ‘modular’ mechanisms of change, such as those caused by exon shuffling or recombination. Instead, the shift in specificity has been acquired through a limited number of point mutations that have resulted in amino acid substitutions along the substrate-binding cleft. This is consistent with current theories that the evolution of new enzymic activity is often achieved through duplication of the gene encoding an existing enzyme which is capable of performing the required chemistry, in this case the hydrolysis of a glycosidic linkage, followed by the mutational alteration and fine-tuning of substrate specificity. The evolution of a new specificity has enabled a dramatic shift in the functional capabilities of the enzymes. (1→3)-β-Glucanases that play a major role, inter alia, in the protection of the plant against pathogenic microorganisms through their ability to hydrolyse the (1→3)-β-glucans of fungal cell walls, appear to have been recruited to generate (1→3,1→4)-β-glucanases, which quite specifically hydrolyse plant cell wall (1→3,1→4)-β-glucans in the graminaecous monocotyledons during normal wall metabolism. Thus, one class of β-glucan endohydrolase can degrade β-glucans in fungal walls, while the other hydrolyses structurally distinct β-glucans of plant cell walls. Detailed information on the three-dimensional structures of the enzymes and the identification of catalytic amino acids now present opportunities to explore the precise molecular and atomic details of substrate-binding, catalytic mechanisms and the sequence of molecular events that resulted in the evolution of the substrate specificities of the two classes of enzyme.  相似文献   
7.
Water-soluble (1→3),(1→4)-β-d-glucans isolated from barleys grown in Australia and the UK were depolymerised using a purified (1→3),(1→4)-β-d-glucan 4-glucanohydrolase (EC 3.2.1.73). Oligomeric products were quantitatively separated by high resolution gel filtration chromatography and their structures defined by methylation analysis. Approximately 90% (w/w) of each polysaccharide consists of cellotriosyl and cellotetraosyl residues separated by single (1→3)-linkages but blocks of 5–11 (1→4)-linked glucosyl residues are also present in significant proportions. Periodate oxidation followed by Smith degradation suggested that contiguous (1→3)-linked β-glucosyl residues are either absent, or present in very low frequency. The potential for misinterpretation of data due to incomplete Smith degradation was noted.The irregularly-spaced (1→3)-linkages interrupt the relatively rigid, ribbon-like (1→4)-β-glucan conformation and confer a flexibility and ‘irregular’ shape on the barley (1→3),(1→4)-β-d-glucan, consistent with its solubility in water. Molecular models incorporating the major structural features confirm that the polysaccharide is likely to assume a worm-like conformation in solution. Non-covalent interactions between long blocks of (1→4)-linkages in (1→3),(1→4)-β-d-glucans, or between these blocks and other polysaccharides, offer a possible explanation for the organisation of polysaccharides in the framework of the cell wall.  相似文献   
8.
Two 1,3;1,4-beta-glucan endohydrolases have been purified from extracts of germinating barley by ammonium sulphate precipitation, ion-exchange and gel filtration chromatography. Both enzymes are monomeric, basic proteins. Enzyme I has a molecular weight of 28000 and an isoelectric point of 8.5, while enzyme II has a molecular weight of 33000 and an isoelectric point greater than 10. Enzyme II is a glycoprotein containing 3.6% carbohydrate, of which three residues are probable N-acetylglucosamine, but enzyme I contains only traces of associated carbohydrate. The amino acid compositions of the two 1,3;1,4-beta-glucan endohydrolases are similar and the cross-reactivity of antibodies raised against the purified enzymes suggests that they share common antigenic determinants.  相似文献   
9.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号