首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) serve to transduce information from agonist-bound receptors to effector enzymes or ion channels. Current models of G protein activation-deactivation indicate that the oligomeric GDP-bound form must undergo release of GDP, bind GTP and undergo subunit dissociation, in order to be in active form (GTP bound subunits and free dimers) and to regulate effectors. The effect of receptor occupation by an agonist is generally accepted to be promotion of guanine nucleotide exchange thus allowing activation of the G protein. Recent studies indicate that transphosphorylation leading to the formation of GTP from GDP and ATP in the close vicinity, or even at the G protein, catalysed by membrane-associated nucleoside diphosphate kinase, may further activate G proteins. This activation is demonstrated by a decreased affinity of G protein-coupled receptors for agonists and an increased response of G protein coupled effectors. In addition, a phosphorylation of G protein subunits and consequent phosphate transfer reaction resulting in G protein activation has also been demonstrated. Finally, endogenously formed GTP was preferentially effective in activating some G proteins compared to exogenous GTR The aim of this report is to present an overview of the evidence to date for a transphosphorylation as a means of G protein activation (see also refs [1 and 2] for reviews). (Mol Cell Biochem 157: 593, 1996)Recipient of Servier Investigator Award  相似文献   
2.
To evaluate the biological preference of [Yb(phen)2(OH2)Cl3](H2O)2 (phen is 1,10-phenanthroline) for DNA, interaction of Yb(III) complex with DNA in Tris–HCl buffer is studied by various biophysical and spectroscopic techniques which reveal that the complex binds to DNA. The results of fluorescence titration reveal that [Yb(phen)2(OH2)Cl3](H2O)2 has strongly quenched in the presence of DNA. The binding site number n, apparent binding constant K b, and the Stern–Volmer quenching constant K SV are determined. ΔH 0, ΔS 0, and ΔG 0 are obtained based on the quenching constants and thermodynamic theory (ΔH 0?>?0, ΔS 0?>?0, and ΔG 0?<?0). The experimental results show that the Yb(III) complex binds to DNA by non-intercalative mode. Groove binding is the preferred mode of interaction for [Yb(phen)2(OH2)Cl3](H2O)2 to DNA. The DNA cleavage results show that in the absence of any reducing agent, Yb(III) complex can cleave DNA. The antimicrobial screening tests are also recorded and give good results in the presence of Yb(III) complex.  相似文献   
3.
Formation of GTP by nucleoside diphosphate kinase (NDPK) can contribute to G protein activation in vitro. To study the effect of NDPK on G protein activity in living cells, the NDPK isoforms A and B were stably expressed in H10 cells, a cell line derived from neonatal rat cardiomyocytes. Overexpression of either NDPK isoform had no effect on cellular GTP and ATP levels, basal cAMP levels, basal adenylyl cyclase activity, and the expression of G(s)alpha and G(i)alpha proteins. However, co-expression of G(s)alpha led to an increase in cAMP synthesis that was largely enhanced by the expression of NDPK B, but not NDPK A, and that was confirmed by direct measurement of adenylyl cyclase activity. Cells expressing an inactive NDPK B mutant (H118N) exhibited a decreased cAMP formation in response to G(s)alpha. Co-immunoprecipitation studies demonstrated a complex formation of the NDPK with Gbetagamma dimers. The overexpression of NDPK B, but not its inactive mutant or NDPK A, increased the phosphorylation of Gbeta subunits. In summary, our data demonstrate a specific NDPK B-mediated activation of a G protein in intact cells, which is apparently caused by formation of NDPK B.Gbetagamma complexes and which appears to contribute to the receptor-independent activation of heterotrimeric G proteins.  相似文献   
4.
5.
6.
G protein betagamma dimers can be phosphorylated in membranes from various tissues by GTP at a histidine residue in the beta subunit. The phosphate is high energetic and can be transferred onto GDP leading to formation of GTP. Purified Gbetagamma dimers do not display autophosphorylation, indicating the involvement of a separate protein kinase. We therefore enriched the Gbeta-phosphorylating activity present in preparations of the retinal G protein transducin and in partially purified G(i/o) proteins from bovine brain. Immunoblots, autophosphorylation, and enzymatic activity measurements demonstrated enriched nucleoside diphosphate kinase (NDPK) B in both preparations, together with residual Gbetagamma dimers. In the retinal NDPK B-enriched fractions, a Gbeta-specific antiserum co-precipitated phosphorylated NDPK B, and an antiserum against the human NDPK co-precipitated phosphorylated Gbetagamma. In addition, the NDPK-containing fractions from bovine brain reconstituted the phosphorylation of purified Gbetagamma. For identification of the phosphorylated histidine residue, bovine brain Gbetagamma and G(t)betagamma were thiophosphorylated with guanosine 5'-O-(3-[(35)S]thio)triphosphate, followed by digestion with endoproteinase Glu-C and trypsin, separation of the resulting peptides by gel electrophoresis and high pressure liquid chromatography, respectively, and sequencing of the radioactive peptides. The sequence information produced by both methods identified specific labeled fragments of bovine Gbeta(1) that overlapped in the heptapeptide, Leu-Met-Thr-Tyr-Ser-His-Asp (amino acids 261-267). We conclude that NDPK B forms complexes with Gbetagamma dimers and contributes to G protein activation by increasing the high energetic phosphate transfer onto GDP via intermediately phosphorylated His-266 in Gbeta(1) subunits.  相似文献   
7.
Increasing evidence suggests that reversible phosphorylation of histidine residues in proteins is important for signaling cascades in eukaryotic cells. Recently, the first eukaryotic protein histidine phosphatase (PHP) was identified. The beta1-subunit of heterotrimeric G proteins (Gbeta) undergoes phosphorylation on His266 which is apparently involved in receptor-independent G protein activation. We studied whether phosphorylated Gbeta-subunits are substrates of PHP. Phosphorylated Gbetagamma dimers of the retinal G protein transducin and Gbeta in membrane preparations of H10 cells (neonatal rat cardiomyocytes) were dephosphorylated by PHP. Overexpression of PHP in H10 cells showed that PHP and Gbeta also interfere within cells. In membranes of cells overexpressing PHP, the amount of phosphorylated Gbeta was largely reduced. Both our in vitro and cell studies indicate that phosphorylated Gbeta-subunits of heterotrimeric G proteins are substrates of PHP. Therefore, PHP might play a role in the regulation of signal transduction via heterotrimeric G proteins.  相似文献   
8.
Statins have a variety of cardioprotective properties following chronic treatment. In contrast, little is known about the acute effects. Reperfusion acutely injures the heart by activation of neutrophils as well as endothelial cells. Because statins are known to influence the processes pathogenetically involved, we hypothesized that acute application of statins attenuates the sequelae of cardiac reperfusion. In rats, myocardial infarction (MI) was induced by ligature of the left coronary artery followed by reperfusion. Myocardial blood flow (MBF) was determined by H2 clearance and regional myocardial function (fractional thickening, FT) by pulsed Doppler. MI size was measured by triphenyltetrazolium chloride (TTC) staining, neutrophil extravasation by determination of myeloperoxidase (MPO) activity, and nitric oxide generation via measurement of cGMP. Treatment with fluvastatin, administered intravenously 20 min before the onset of ischemia, significantly attenuated the decline of FT and MBF at the end of the reperfusion period and significantly reduced MI size. Furthermore, fluvastatin induced a significant reduction of MPO activity and an increase of cGMP level compared with the control group. The effect of fluvastatin was completely abolished following pretreatment of NG-nitro-l-arginine methyl ester (l-NAME). These findings suggest that acute application of fluvastatin reduces MI size and attenuates reperfusion injury. We propose that the underlying mechanism is at least partially an inhibition of inflammation and endothelial dysfunction by preventing the activation and extravasation of neutrophils.  相似文献   
9.
The primary structure of the 70 kDa subunit of soluble bovine guanylate cyclase, which catalyzes the formation of cyclic GMP from GTP, has been determined. The alignment of six different clones out of two bovine libraries yielded a total of 3.1 kb with a coding region of 1857 bases. The open reading frame encodes a protein of 619 amino acids and a molecular mass of 70.5 kDa. Antibodies raised against a synthetic peptide, which corresponded to the C-terminus of the deduced sequence precipitated guanylate cyclase activity from guanylate cyclase-enriched preparations.  相似文献   
10.
Long-term treatment with angiotensin-converting enzyme (ACE) inhibitors as well as angiotensin II type 1 (AT(1)) receptor antagonists and statins reduces cardiovascular mortality in patients with coronary artery disease as well as chronic heart failure. Little is known about the acute effects of these compounds on vascular reactivity of coronary resistance vessels. Coronary arterioles were obtained from patients undergoing coronary bypass operation (atherosclerosis group) or valve replacement (control group). Responses to endothelium-dependent agonists (histamine, serotonin, and acetylcholine) as well as to the endothelium-independent agonist sodium nitroprusside (SNP) were investigated under baseline conditions and after incubation (15 min) with lisinopril (ACE inhibitor), candesartan (AT(1) receptor antagonist), or fluvastatin. In atherosclerotic vessels, vasorelaxation was significantly reduced to all endothelium-dependent agonists but not, however, to SNP (77 +/- 8, -24 +/- 16, -46 +/- 24, and 98 +/- 8% relaxation for histamine, serotonin, acetylcholine, and SNP, respectively). Lisinopril and fluvastatin but not candesartan significantly improved the responses to the endothelium-dependent agonists (lisinopril: 94 +/- 4, 17 +/- 22, and -20 +/- 13%; fluvastatin: 96 +/- 8, 23 +/- 21, and -25 +/- 18% relaxation for histamine, serotonin, and acetylcholine, respectively). The effect of lisinopril was prevented by pretreatment with a bradykinin antagonist (HOE-130) and dichloroisocoumarine, an inhibitor of kinine-forming enzymes. Pretreatment with a nitric oxide (NO) synthase inhibitor abolished the improvement of endothelial function by lisinopril and fluvastatin. Vascular reactivity in the control group was not influenced by any of the pharmacological interventions. The data demonstrate that in atherosclerosis, endothelium-dependent relaxation of coronary resistance arteries is severely compromised. The impairment can acutely be reversed by ACE inhibitors and statins via increasing the availability of NO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号