首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1991年   2篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有33条查询结果,搜索用时 93 毫秒
1.
The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance.  相似文献   
2.
Energy generation and consumption have always been an important component of social development. Interests in this field are beginning to shift to indoor photovoltaics (IPV) which can serve as power sources under low light conditions to meet the energy needs of rapidly growing fields, such as intelligence gathering and information processing which usually operate via the Internet‐of‐things (IoT). Since the power requirements for this purpose continue to decrease, IPV systems under low light may facilitate the realization of self‐powered high‐tech electronic devices connected through the IoT. This review discusses and compares the characteristics of different types of IPV devices such as those based on silicon, dye, III‐V semiconductors, organic compounds, and halide perovskites. Among them, specific attention is paid to perovskite photovoltaics which may potentially become a high performing IPV system due to the fascinating photophysics of the halide perovskite active layer. The limitations of such indoor application as they relate to the toxicity, stability, and electronic structure of halide perovskites are also discussed. Finally, strategies which could produce highly functional, nontoxic, and stable perovskite photovoltaics devices for indoor applications are proposed.  相似文献   
3.
Molecularly imprinted polymer‐modified glassy carbon electrode (GCE)‐based electrochemical sensor is prepared using the electropolymerization of aniline in the presence of melamine (MA) as a template. In this work, the advantages of molecularly imprinted conducting polymers (MICPs) and electroanalytical methods were combined to obtain an electronic device with better performances. The sensor performance was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) with the linear range of 0.6‐16 × 10?9M, quantification limit of 14.9 × 10?10M, and detection limit of 4.47 × 10?10M (S/N = 3). The selectivity of the sensor was tested in the presence of acetoguanamine (AGA), diaminomethylatrazine (DMT), casein, histidine, and glycine interfering molecules taken at the triple concentration with MA that demonstrated too small current response compared with that of the analyte indicating high specificity of the sensor towards the template. The sensor was successfully applied to determine MA in infant formula samples with significant recovery greater than 96% and relative standard deviation (RSD) less than 4.8%. Moreover, the good repeatability, recyclability, and stability make this sensor device promising for the real‐time monitoring of MA in different food stuffs.  相似文献   
4.
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space Rd and an integer k. The problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARIHA). We found that when k is close to d, the quality is good (ARIHA>0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA>0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data.  相似文献   
5.
6.
To characterize the residues that participate in the catalysis of DNA cleavage and rejoining by the site-specific recombinase Tn3 resolvase, we mutated conserved polar or charged residues in the catalytic domain of an activated resolvase variant. We analysed the effects of mutations at 14 residues on proficiency in binding to the recombination site (‘site I’), formation of a synaptic complex between two site Is, DNA cleavage and recombination. Mutations of Y6, R8, S10, D36, R68 and R71 resulted in greatly reduced cleavage and recombination activity, suggesting crucial roles of these six residues in catalysis, whereas mutations of the other residues had less dramatic effects. No mutations strongly inhibited binding of resolvase to site I, but several caused conspicuous changes in the yield or stability of the synapse of two site Is observed by non-denaturing gel electrophoresis. The involvement of some residues in both synapsis and catalysis suggests that they contribute to a regulatory mechanism, in which engagement of catalytic residues with the substrate is coupled to correct assembly of the synapse.  相似文献   
7.

Background and aims

The decomposition of roots is an important process in the loss of carbon (C) and the mineralization of nitrogen (N) in forest ecosystems. The early stage decomposition rate of Sitka spruce (Picea sitchensis (Bong.) Carr.) roots was determined using trenched plots and decomposition bags.

Methods

Stumps of known age were trenched and quadrants (50?cm by 50?cm) excavated from randomly selected stumps every 6?months over 4?years, while the mass loss from buried roots in decomposition bags, divided among four diameter categories (ranging from fine roots <2?mm to large roots >50?mm), was monitored for 27?months. The C and N concentrations of excavated samples at different time points were analysed.

Results

The change in total root necromass per quadrant showed a higher decomposition rate-constant (k) of 0.24?±?0.068?year?1 than the k-value of roots in decomposition bags (0.07?±?0.005?year?1). The C concentration (47.24?±?0.609?%) did not significantly change with decomposition. There was a significant increase in the C:N ratio of roots in all diameter categories (fine: 48.92?%, small: 38.53?%, medium 11.71?%, large: 76.25?%) after 4?years of decomposition, driven by N loss. Root diameter accounted for 78?% of the variation in the N concentration of roots as decomposition progressed.

Conclusion

Though the trenched plot approach offered an alternative to the more common decomposition bag method for estimating root decomposition, high spatial variation and sampling difficulties may lead to an overestimation of the mass loss from trenched roots, thus, the decomposition bag method gives a more reliable decomposition rate-constant.  相似文献   
8.
The field of halide metal perovskite photovoltaics has caught widespread interest in the last decade. This is seen in the rapid rise of power conversion efficiency, which is currently over 23%. It has also stimulated a widespread application of halide metal perovskites in other fields, such as light‐emitting diodes, field‐effect transistors, detectors, and lasers. Despite the fascinating characteristics of the halide metal perovskites, the presence of toxic lead (Pb) in their chemical composition is regarded as one of the major limiting factors preventing their commercialization. Addressing the toxicity issues in these compounds by a careful and strategic replacement of Pb2+ with other nontoxic candidate elements represents a promising direction to fabricate lead‐free optoelectronic devices. Such attempts yield a halide double perovskite structure which allows flexibility for various compositional adjustments. Here, the authors present the current progress and setbacks in crystal structures, materials preparation, optoelectronic properties, stability, and photovoltaic applications of lead‐free halide double perovskite compounds. Prospective research directions to improve the optoelectronic properties of existing materials are given that may help in the discovery of new lead‐free halide double perovskites.  相似文献   
9.
The effect of five chemical preservatives on the micro-organisms associated with sorghum grain and malts was investigated. Sorbic acid, sodium benzoate, nisin, formaldehyde and lime at concentrations up to 500, 100, 1000, 1500 and 2000 ppm, respectively did not adversely affect the malting properties of sorghum grain. Only HCHO and Ca(OH)2, each of which prevented bacteria and mould growth at 500 and 2000 ppm, respectively, were sufficiently effective at maximum practicable concentrations to control microbial contamination during malting.  相似文献   
10.
Zinc-finger recombinases (ZFRs) are chimaeric proteins comprising a serine recombinase catalytic domain linked to a zinc-finger DNA binding domain. ZFRs can be tailored to promote site-specific recombination at diverse 'Z-sites', which each comprise a central core sequence flanked by zinc-finger domain-binding motifs. Here, we show that purified ZFRs catalyse efficient high-specificity reciprocal recombination between pairs of Z-sites in vitro. No off-site activity was detected. Under different reaction conditions, ZFRs can catalyse Z-site-specific double-strand DNA cleavage. ZFR recombination activity in Escherichia coli and in vitro is highly dependent on the length of the Z-site core sequence. We show that this length effect is manifested at reaction steps prior to formation of recombinants (binding, synapsis and DNA cleavage). The design of the ZFR protein itself is also a crucial variable affecting activity. A ZFR with a very short (2 amino acids) peptide linkage between the catalytic and zinc-finger domains has high activity in vitro, whereas a ZFR with a very long linker was less recombination-proficient and less sensitive to variations in Z-site length. We discuss the causes of these phenomena, and their implications for practical applications of ZFRs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号