首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2006年   3篇
  2005年   2篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1977年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
A rat hepatocyte cell line was cultured in Higuchi's medium with fetal calf serum and insulin and labeled with 35SO2/4-. The cells were treated with a number of ligands to displace the heparan 35SO4 proteoglycan (HSPG) from the pericellular matrix. Maximum release was obtained with D-mannose-6-PO4 (50 mM), D-glucose-6-PO4 (50 mM), myo-inositol-2-PO4 (2-5 mM), myo-inositol hexaphosphate (2-5 mM), and DL-myo-inositol-1-PO4 (1-2 mM). D-myo-Inositol-1,3,4-(PO4)3 (1 mM) and L-myo-inositol-1-PO4 (2 mM) were intermediate in their ability to release the cell surface HSPG, whereas heparin (2 mg/ml), yeast phosphomannan (4 mg/ml), D-xylose-1-PO4 (50 mM), D-glucose-6-SO4 (50 mM), and myo-inositol hexasulfate (5 mM) were ineffective. When 35SO2/4- was added to cell cultures, the total cell surface HSPG increased linearly, but the percentage of the total cell surface [35SO4]HSPG that was released by myo-inositol-PO4 increased with time during the labeling period, reaching a maximum of 65% after 5 h. When cells were labeled for 12 h without insulin in the medium, the maximum amount of cell surface HSPG that was released by myo-inositol-PO4 was reduced to 30%. However, when cells labeled in the absence of insulin were treated with phosphatidylinositol-specific phospholipase C and then myo-inositol-PO4, the release of the cell surface [35SO4]HSPG was increased to 73%. When the [35SO4]HSPG that was released from the cell surface by treatment with myo-inositol-PO4 was added to cultures of unlabeled hepatocytes, it was taken up very rapidly and a portion of the internalized HSPG was converted to free heparan SO4 chains which appeared in the nucleus. Uptake was Ca2+- and Mg2+-independent. The amount of [35SO4]HSPG taken up was markedly reduced when the myo-inositol-PO4-releasable [35SO4]HSPG was pretreated with trypsin, thermolysin, alkaline borohydride, or alkaline phosphatase. When the cells were grown in inositol-deficient medium or in the presence of myo-inositol-PO4, the amount of heparan SO4 found in the nucleus was markedly reduced, and the cells no longer exhibited contact inhibition. These effects of myo-inositol deficiency on the growth and nuclear heparan SO4 were accentuated by addition of LiCl to the cultures to prevent phosphatidylinositol synthesis from the endogenous myo-inositol-PO4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
2.
3.
4.
A wide-ranging examination of plastid (pt)DNA sequence homologies within higher plant nuclear genomes (promiscuous DNA) was undertaken. Digestion with methylation-sensitive restriction enzymes and Southern analysis was used to distinguish plastid and nuclear DNA in order to assess the extent of variability of promiscuous sequences within and between plant species. Some species, such as Gossypium hirsutum (cotton), Nicotiana tabacum (tobacco), and Chenopodium quinoa, showed homogenity of these sequences, while intraspecific sequence variation was observed among different cultivars of Pisum sativum (pea), Hordeum vulgare (barley), and Triticum aestivum (wheat). Hypervariability of plastid sequence homologies was identified in the nuclear genomes of Spinacea oleracea (spinach) and Beta vulgaris (beet), in which individual plants were shown to possess a unique spectrum of nuclear sequences with ptDNA homology. This hypervariability apparently extended to somatic variation in B. vulgaris. No sequences with ptDNA homology were identified by this method in the nuclear genome of Arabidopsis thaliana.   相似文献   
5.
A survey was conducted to determine the levels of fumonisins B1 and B2 in corn and corn-based products available in Colombia for human and animal consumption. A total of 120 samples were analyzed by acetonitrile-water extraction, cleanup with a strong-anion-exchange column, and liquid chromatography with o-phthaldialdehyde-2-mercaptoethanol derivatization and fluorescence detection. The samples of corn and corn-based products for animal intake were taken at different feed manufacturing plants, whereas the samples used for human foods where purchased from local retail stores. The number of positive samples for fumonisin B1 was 20.0% higher in corn and corn-based products for animal intake (75.0%) than in corn and corn-based products for human consumption (55.0%). The levels of fumonisin B1 were also higher in corn and corn-based products for animal intake (mean = 694 μg/kg; range = 32–2964 μg/kg), than in corn and corn-based products for human intake (mean = 218 μg/kg; range = 24–2170 μg/ kg). The incidence and levels of fumonisin B2 were lower than those for fumonisin B1. Corn and corn-based products for animal consumption had an incidence of fumonisin B2 of 58.3%, with a mean value of 283 μg/kg, and a range of 44–987 μg/kg. The incidence of fumonisin B2 in corn-based products for human intake was 35.0%, with a mean value of 118 μg/kg and a range of 21–833 μg/kg. The highest incidence and levels of fumonisins were found in samples of hominy feed, with concentrations ranging from 86 to 2964 μg/kg fumonisin B1 and 57 to 987 μg/kg fumonisin B2.  相似文献   
6.
OBJECTIVE: We have recently identified an activation site on (Na+ + K+)-ATPase and found that binding of antibody SSA412 to this specific site of the enzyme markedly augments (Na+ + K+)-ATPase catalytic activity. Demonstration of whether activation of (Na+ + K+)-ATPase affects heart function in animal in vivo was the object of this investigation. METHODS: Male wild-type CD-1 mouse and specific antibody SSA412 were used for the study. A pressure-volume micromanometer-conductance catheter in anesthetized mouse assessed in vivo cardiac functions. RESULTS: Specific antibody SSA412 infusion in mouse shifted pressure-volume loop leftward with increased stroke volume and enhanced end-systolic elastance. Global systolic parameters such as ejection fraction and cardiac output, and load independent contractile parameters including dP/dtmax/IP, PMX/EDV, Ees, and PRSW, were all increased without any effect on relaxation following administration of SSA412. Cardiac preload indexed by EDV and afterload by ESP did not alter, suggesting that SSA412-enhanced myocardial performance is a direct cardiac effect caused by the activation of (Na+ + K+)-ATPase. CONCLUSION: Our study provides the first in vivo physiological evidence to demonstrate that activation of (Na+ + K+)-ATPase induces significant positive inotropic effect in intact animal heart. The finding may lead to new therapeutic strategies for the treatment of heart failure.  相似文献   
7.
Jain A  Fisher LW  Fedarko NS 《Biochemistry》2008,47(22):5986-5995
Bone sialoprotein (BSP) is a secreted glycophosphoprotein normally restricted in expression to skeletal tissue that is also induced by multiple neoplasms in vivo. Previous work has shown that BSP can bind to matrix metalloproteinase-2 (MMP-2). Because of MMP-2 activity in promoting tumor progression, potential therapeutic inhibitors were developed, but clinical trials have been disappointing. The effect of BSP on MMP-2 modulation by inhibitors was determined with purified components and in cell culture. Enzyme inhibition kinetics were studied using a low-molecular weight freely diffusable substrate and purified MMP-2, BSP, and natural (tissue inhibitor of matrix metalloproteinase-2) and synthetic (ilomastat and oleoyl- N-hydroxylamide) inhibitors. We determined parameters of enzyme kinetics by varying substrate concentrations at different fixed inhibitor concentrations added to MMP-2 alone, MMP-2 and BSP, or preformed MMP-2-BSP complexes and solving a general linear mixed inhibition rate equation with a global curve fitting program. Two in vitro angiogenesis model systems employing human umbilical vein endothelial cells (HUVECs) were used to follow BSP modulation of MMP-2 inhibition and tubule formation. The presence of BSP increased the competitive K I values between 15- and 47-fold for natural and synthetic inhibitors. The extent of tubule formation by HUVECs cocultured with dermal fibroblasts was reduced in the presence of inhibitors, while the addition of BSP restored vessel formation. A second HUVEC culture system demonstrated that tubule formation by cells expressing BSP could be inhibited by an activity blocking antibody against MMP-2. BSP modulation of MMP-2 activity and inhibition may define its biological role in promoting tumor progression.  相似文献   
8.
Frailty is an important geriatric syndrome that predicts disability and mortality. Substantial evidence suggests inflammation marked by elevated IL-6 levels as a key pathophysiologic factor that contributes to frailty. CXCL-10, a potent pro-inflammatory chemokine, has increased levels with age and is implicated in several inflammatory conditions. To better understand molecular mechanisms of inflammation activation in frailty, we evaluated monocytic expression of CXCL-10 and other inflammatory pathway genes by pathway-specific gene array analysis and quantitative RT-PCR. Frailty status was determined by the validated criteria. Sixteen pairs of community-dwelling frail and age-, race-, and sex-matched non-frail participants (mean age 83 years, range 72–94) completed the study. Here we report that frail participants had higher CXCL-10 expression levels than matched non-frail controls (1.05 ± 0.88 versus 0.53 ± 0.39, p = 0.04). CXCL-10 expression correlated with IL-6 levels only in frail participants (Spearman correlation coefficient r = 0.52, p = 0.03). Furthermore, frailty-associated CXCL-10 upregulation was highly correlated with IL-6 elevation, both measured by frail-over-non-frail ratios (r = 0.93, p < 0.0001). These findings suggest upregulated monocytic expression of CXCL-10 as an important molecular mechanism that contributes to inflammation activation in frail older adults. Therapeutic implications include potential development of CXCL-10-based interventional strategies for the prevention and treatment of frailty in older adults.  相似文献   
9.
10.
The effects of cell surface heparan sulfate proteoglycan (HSPG) prepared from log and confluent monolayers of a rat hepatoma cell line on hepatoma cell growth were studied. When HSPG isolated from confluent cells was added exogenously to log phase cells, it was internalized and free heparan sulfate (HS) chains appeared transiently in the nucleus. Concurrently, the growth of the treated cells was inhibited, but the cells resumed logarithmic growth as the level of nuclear HS fell, and the cells grew to confluence and became contact inhibited. When HSPG prepared from log-phase hepatoma cells was added exogenously to log phase cells, it was internalized but very little of the internalized HS appeared in the nucleus, and there was no change in the rate of cell growth. However, when the rate of cell growth was reduced by culture of the cells in serum- and insulin-deficient medium, HSPG prepared from log-phase cells stimulated the growth rate of these slow-growing cells. The cell cycle dependency of HSPG uptake and growth inhibition was studied in cultures synchronized by a thymidine/aphidicolin double block. When [35SO4]HSPG from confluent cells was added to synchronized cells just as they were released from the second block, a portion of the [35SO4]HSPG was internalized and [35SO4]HS appeared in the nucleus. However, at mitosis the [35SO4]HS disappeared almost completely from all of the cellular pools, and after mitosis, more of the [35SO4]HSPG was taken up and [35SO4]HS reappeared in the nucleus and remained in the nucleus until the cells divided again. When cultures were released from the aphidicolin block, both control and HSPG-treated cells progressed through the S, the G2, and the M phases of the cell cycle. However, the length of the G1 phase of the cycle was increased in the HSPG-treated cells. The treated cultures then progressed through the second S, G2, and M phases. Thus, the inhibition of cell division occurred in the G1 phase of the cell cycle, prior to the G1/S boundary. Addition of the HSPG to the synchronized cultures just after the first mitosis resulted in an immediate arrest of the cell cycle in G1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号