首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   6篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   12篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   12篇
  2006年   14篇
  2005年   5篇
  2004年   14篇
  2003年   5篇
  2002年   17篇
  2001年   9篇
  2000年   12篇
  1999年   5篇
  1998年   3篇
  1996年   3篇
  1994年   3篇
  1990年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
1.
Effect of heat stress on glucose kinetics during exercise   总被引:2,自引:0,他引:2  
Hargreaves, Mark, Damien Angus, Kirsten Howlett, Nelly MarmyConus, and Mark Febbraio. Effect of heat stress on glucose kinetics during exercise. J. Appl.Physiol. 81(4): 1594-1597, 1996.To identify themechanism underlying the exaggerated hyperglycemia during exercise inthe heat, six trained men were studied during 40 min of cyclingexercise at a workload requiring 65% peak pulmonary oxygen uptake(O2 peak) on twooccasions at least 1 wk apart. On one occasion, the ambient temperaturewas 20°C [control (Con)], whereas on the other, it was40°C [high temperature (HT)]. Rates ofglucose appearance and disappearance were measured by using a primedcontinuous infusion of[6,6-2H]glucose. Nodifferences in oxygen uptake during exercise were observed betweentrials. After 40 min of exercise, heart rate, rectal temperature,respiratory exchange ratio, and plasma lactate were all higher in HTcompared with Con (P < 0.05). Plasmaglucose levels were similar at rest (Con, 4.54 ± 0.19 mmol/l; HT,4.81 ± 0.19 mmol/l) but increased to a greater extent duringexercise in HT (6.96 ± 0.16) compared with Con (5.45 ± 0.18;P < 0.05). This was the result of ahigher glucose rate of appearance in HT during the last 30 min ofexercise. In contrast, the glucose rate of disappearance and metabolicclearance rate were not different at any time point during exercise.Plasma catecholamines were higher after 10 and 40 min of exercise in HTcompared with Con (P < 0.05),whereas plasma glucagon, cortisol, and growth hormone were higher in HTafter 40 min. These results indicate that the hyperglycemia observedduring exercise in the heat is caused by an increase in liver glucoseoutput without any change in whole body glucoseutilization.

  相似文献   
2.
Protein signaling between tissues, or tissue cross‐talk is becoming recognized as a fundamental biological process that is incompletely understood. Shotgun proteomic analyses of tissues and plasma to explore this concept are regularly challenged by high dynamic range of protein abundance, which limits the identification of lower abundance proteins. In this viewpoint article, it is highlighted how a focus on proteins contained within extracellular vesicles (EVs) not only partially addresses this issue, but can also reveal an underappreciated complexity of the circulating proteome in various physiological and pathological contexts. Furthermore, how quantitative proteomics can inform EV mediated crosstalk is highlighted and the importance of high coverage, sensitive proteomic analyses of EVs to identify both the optimal methods to isolate EV subtypes of interest and proteins that characterize them is stressed.  相似文献   
3.
4.
In steroid hydroxylation system in adrenal cortex mitochondria, NADPH-adrenodoxin reductase (AR) and adrenodoxin (Adx) form a short electron-transport chain that transfers electrons from NADPH to cytochromes P-450 through FAD in AR and [2Fe-2S] cluster in Adx. The formation of [AR/Adx] complex is essential for the electron transfer mechanism in which previous studies suggested that AR tryptophan (Trp) residue(s) might be implicated. In this study, we modified AR Trps by N-bromosuccinimide (NBS) and studied AR binding to Adx by a resonant mirror biosensor. Chemical modification of tryptophans caused inhibition of electron transport. The modified protein (AR*) retained the native secondary structure but showed a lower affinity towards Adx with respect to AR. Activity measurements and fluorescence data indicated that one Trp residue of AR may be involved in the electron transferring activity of the protein. Computational analysis of AR and [AR/Adx] complex structures suggested that Trp193 and Trp420 are the residues with the highest probability to undergo NBS-modification. In particular, the modification of Trp420 hampers the correct reorientation of AR* molecule necessary to form the native [AR/Adx] complex that is catalytically essential for electron transfer from FAD in AR to [2Fe-2S] cluster in Adx. The data support an incorrect assembly of [AR*/Adx] complex as the cause of electron transport inhibition.  相似文献   
5.
A large amount of highly purified hydroxytyrosol (91-94% in weight) is obtained in short time by a simple biotransformation of Olea europaea leaf extract by a partially purified hyperthermophilic beta-glycosidase immobilized on chitosan support. The biotransformation conditions have been modulated for increasing the hydroxytyrosol yield, whilst chitosan and chitin matrices are used as adsorbent materials in liquid phase hydroxytyrosol extraction from the biotransformed mixtures. Natural and non-toxic hydroxytyrosol has been by this way produced from a vegetal source, and this compound appeared for the first time highly purified by natural and biocompatible safe biopolymers in comparison to previous results. Moreover, the GC analyses have displayed that the eluates from a two-step bioreactor have qualitative composition very similar to that of the extra-virgin olive oil polar fraction. The proposed bioreactor could also find application in the utilization of olive mill waste waters (OMWW), medium rich in large amounts of oleuropein, which can be converted in pharmacologically active compounds.  相似文献   
6.
The perturbation induced by mono- and divalent cations on the thermophilicity and thermostability of Solfolobus solfataricus -glycosidase, a hyperthermophilic tetrameric enzyme, has been investigated by spectroscopic and computational simulation methods to ascertain the Hofmeister effects on two strategic protein regions identified previously. Specifically, (1) an extra segment (83–124), present only in the sequence of hyperthermophilic glycosidases and recognized as an important thermostability determinant for the enzyme structure; and (2) a restricted area of the subunit interface responsible for the quaternary structure maintenance. Mono- and divalent cations inhibit to a different extent the -glycosidase activity, whose kinetic constants show an apparent competitive inhibition of the catalytic process that reflects the Hofmeister order. The thermostability is also affected by the nature and charge of the cations, reaching maximal effects for the case of Mg2+. Fourier transform infrared spectroscopy has revealed very small changes in the protein secondary structure in the presence of the investigated cations at 20 °C, while large effects on the protein melting temperatures are observed. Computational analysis of the enzyme structure has identified negative patches on the accessible surface of the two identified regions. Following the Hofmeister series, cations weaken the existing electrostatic network that links the extra segment to the remaining protein matrix. In particular, the perturbing action of cations could involve the ionic pair interactions E107–R245 and E109–R185, thus leading to a local destructuring of the extra segment as a possible starting event for thermal destabilization. A detailed investigation of the electrostatic network at the A–C intermolecular interface of Sgly after energy minimization suggests that cations could cause a strong attenuation of the ion pair interactions E474–K72 and D473–R402, with consequent partial dissociation of the tetrameric structure.Abbreviations Amide I amide I band in a 2H2O medium - EM energy minimization - ONPG o-nitrophenyl--d-galactopyranoside - Sgly Escherichia coli expressed Sulfolobus solfataricus -glycosidase  相似文献   
7.
Heat shock protein (Hsp) 72 is a cytosolic stress protein that is highly inducible by several factors including exercise. Hsp60 is primarily mitochondrial in cellular location, plays a key role in the intracellular protein translocation and cytoprotection, is increased in skeletal muscle by exercise, and is found in the peripheral circulation of healthy humans. Glucose deprivation increases Hsp72 in cultured cells, whereas reduced glycogen availability elevates Hsp72 in contracting human skeletal muscle. To determine whether maintained blood glucose during exercise attenuates the exercise-induced increase in intramuscular and circulating Hsp72 and Hsp60, 6 males performed 120 minutes of semirecumbent cycling at approximately 65% maximal oxygen uptake on 2 occasions while ingesting either a 6.4% glucose (GLU) or sweet placebo (CON) beverage throughout exercise. Muscle biopsies, obtained before and immediately after exercise, were analyzed for Hsp72 and Hsp60 protein expression. Blood samples were simultaneously obtained from a brachial artery, a femoral vein, and the hepatic vein before and during exercise for the analysis of serum Hsp72 and Hsp60. Leg and hepatosplanchnic blood flow were measured to determine Hsp72-Hsp60 flux across these tissue beds. Neither exercise nor glucose ingestion affected the Hsp72 or Hsp60 protein expression in, or their release from, contracting skeletal muscle. Arterial serum Hsp72 increased (P < 0.05) throughout exercise in both trials but was attenuated (P < 0.05) in GLU. This may have been in part because of the increased (P < 0.05) hepatosplanchnic Hsp72 release in CON, being totally abolished (P < 0.05) in GLU. Serum Hsp60 increased (P < 0.05) after 60 minutes of exercise in CON before returning to resting levels at 120 minutes. In contrast, no exercise-induced increase in serum Hsp60 was observed in GLU. We detected neither hepatosplanchnic nor contracting limb Hsp60 release in either trial. In conclusion, maintaining glucose availability during exercise attenuates the circulating Hsp response in healthy humans.  相似文献   
8.
A central role in the oxidative development of atherosclerotic lesions has been ascribed to the peroxidation of plasma low-density lipoprotein (LDL). Dietary supplementation with virgin olive oils increases the total plasma antioxidant status and the resistance of low-density lipoprotein to ex vivo oxidation. We have studied the effects of some dietary non-flavonoid phenols from Olea europaea L., both in purified form or in complex mixtures obtained by biotransformation of olive leaf extracts, on the LDL oxidation induced by Cu2+ ions. Cu2+-Induced LDL oxidation is inhibited by oleuropein and hydroxytyrosol in the initiation phase of the reaction at concentrations of phenols higher than that of Cu2+ ions. Interestingly, at lower concentration, both phenols anticipated the initiation process of LDL oxidation, thus exerting prooxidant capacities. Although similar effects are already described for flavonoids, such as quercetin, rutin, and apigenin, it is the first time that a prooxidant effect of dietary non-flavonoid phenols, such as oleuropein and hydroxytyrosol, on the LDL oxidation is reported. Our results show that a net effect of oleuropein and hydroxytyrosol on Cu2+-induced LDL peroxidation is determined by a balance of their pro- and antioxidant capacities. It is worth to underline that, during Cu2+-induced LDL oxidation in the presence of bioreactor eluates, we have evidence of a synergistic effect among phenolic compounds that enhance their antioxidant capacities so avoiding the prooxidant effects.  相似文献   
9.
CD36 (fatty acid translocase) is involved in high-affinity peripheral fatty acid uptake. Mice lacking CD36 exhibit increased plasma free fatty acid and triglyceride (TG) levels and decreased glucose levels. Studies in spontaneous hypertensive rats lacking functional CD36 link CD36 to the insulin-resistance syndrome. To clarify the relationship between CD36 and insulin sensitivity in more detail, we determined insulin-mediated whole-body and tissue-specific glucose uptake in CD36-deficient (CD36-/-) mice. Insulin-mediated whole-body and tissue-specific glucose uptake was measured by d-[3H]glucose and 2-deoxy-d-[1-3H]glucose during hyperinsulinemic clamp in CD36-/- and wild-type control littermates (CD36+/+) mice. Whole-body and muscle-specific insulin-mediated glucose uptake was significantly higher in CD36-/- compared with CD36+/+ mice. In contrast, insulin completely failed to suppress endogenous glucose production in CD36-/- mice compared with a 40% reduction in CD36+/+ mice. This insulin-resistant state of the liver was associated with increased hepatic TG content in CD36-/- mice compared with CD36+/+ mice (110.9 +/- 12.0 and 68.9 +/- 13.6 microg TG/mg protein, respectively). Moreover, hepatic activation of protein kinase B by insulin, measured by Western blot, was reduced by 54%. Our results show a dissociation between increased muscle and decreased liver insulin sensitivity in CD36-/- mice.  相似文献   
10.
IL-6 expression in skeletal muscle is stimulated by contractions. We sought to examine whether hyperinsulinaemia increases IL-6 mRNA in skeletal muscle and whether any increase is modified in insulin resistant muscle. We hypothesized that intramuscular IL-6 mRNA would be increased in response to insulin, but such an affect would be unaffected by insulin resistance because the primary insulin sensitive signalling protein responsible for activating IL-6 functions normally in insulin resistant muscle. Transgenic rats over-expressing the gluconeogenic regulatory enzyme phosphoenolpyruvate carboxykinase (PEPCK) were studied. White gastrocnemius muscle samples were obtained under hyperinsulinaemic, euglycaemic clamp (4 mU kg(-1)min(-1) insulin, plasma glucose concentration 4-6 mmol L(-1)) and basal conditions in both PEPCK (basal n=4; insulin n=5) and wild-type (CON) (basal n=5; insulin n=4) rats, which were previously injected with a bolus of 2-[1-14C]deoxyglucose (2-DG) into the carotid artery. Muscle samples were assayed for 2-DG uptake and IL-6 mRNA. No differences in 2-DG uptake or IL-6 mRNA were observed when comparing groups under basal conditions. Under clamp conditions, 2-DG uptake was lower (P<0.05) in PEPCK compared with CON. Insulin stimulation in CON did not change IL-6 mRNA compared with basal levels. In contrast, there was an approximately 8-fold increase (P<0.05) in IL-6 mRNA in insulin-stimulated PEPCK compared with CON basal levels. Insulin stimulation increases IL-6 gene expression in insulin resistant, but not healthy, skeletal muscle, suggesting that IL-6 expression in skeletal muscle is sensitive to changes in insulin in circumstances of insulin resistance. It is likely that the differences observed when comparing healthy with insulin resistant muscle are due to the differential activation of insulin sensitive signalling proteins responsible for activating IL-6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号