首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   14篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   8篇
  2009年   2篇
  2008年   10篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   13篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1979年   1篇
  1978年   3篇
  1969年   1篇
  1968年   2篇
  1944年   1篇
排序方式: 共有138条查询结果,搜索用时 140 毫秒
1.
The structure of a small-molecule, non-peptide chemotactic factor has been determined from activity purified to apparent homogeneity from Helicobacter pylori supernatants. H. pylori was grown in brucella broth media until one liter of solution had 0.9 absorbance units. The culture was centrifuged, and the bacteria re-suspended in physiological saline and incubated at 37 degrees C for 4 h. A monocyte migration bioassay revealed the presence of a single active chemotactic factor in the supernatant from this incubation. The chemotactic factor was concentrated by solid phase chromatography and purified by reverse phase high pressure liquid chromatography. The factor was shown to be indistinguishable from diethyl phthalate (DEP) on the basis of multiple criteria including nuclear magnetic resonance spectroscopy, electron impact mass spectroscopy, UV visible absorption spectrometry, GC and high pressure liquid chromatography retention times, and chemotactic activity toward monocytes. Control experiments with incubated culture media without detectable bacteria did not yield detectable DEP, suggesting it is bacterially derived. It is not known if the bacteria produce diethyl phthalate de novo or if it is a metabolic product of a precursor molecule present in culture media. DEP produced by H. pylori in addition to DEP present in man-made products may contribute to the high levels of DEP metabolites observed in human urine. DEP represents a new class of chemotactic factor.  相似文献   
2.
Nitrite oxidase and nitrate reductase in Nitrobacter agilis were shown to be separate enzymes. The best separation of the two systems was achieved by ammonium sulphate fractionation. The effects of various compounds, including antimycin A, 2-n-heptyl-4-hydroxyquinoline N-oxide and chlorate, also clearly distinguish between the two enzyme reactions. The relationship between the two opposing reactions in Nitrobacter is discussed.  相似文献   
3.
4.
5.
Integration of biochemical and biophysical data on the lactose permease of Escherichia coli has culminated in a molecular model that predicts substrate-protein proximities which include interaction of a hydroxyl group in the galactopyranosyl ring with Glu269. In order to test this hypothesis, we studied covalent modification of carboxyl groups with carbodiimides using electrospray ionization mass spectrometry (ESI-MS) and demonstrate that substrate protects the permease against carbodiimide reactivity. Further more, a significant proportion of the decrease in carbodiimide reactivity occurs specifically in a nanopeptide containing Glu269. In contrast, carbodiimide reactivity of mutant Glu269-->Asp that exhibits lower affinity is unaffected by substrate. By monitoring the ability of different substrate analogs to protect against carbodiimide modification of Glu269, it is suggested that the C-3 OH group of the galactopyranosyl ring may play an important role in specificity, possibly by H-bonding with Glu269. The approach demonstrates that mass spectrometry can provide a powerful means of analyzing ligand interactions with integral membrane proteins.  相似文献   
6.
The Na(+)/galactose cotransporter (vSGLT) of Vibrio parahaemolyticus, tagged with C-terminal hexahistidine, has been purified to apparent homogeneity by Ni(2+) affinity chromatography and gel filtration. Resequencing the vSGLT gene identified an important correction: the N terminus constitutes an additional 13 functionally essential residues. The mass of His-tagged vSGLT expressed under its native promoter, as determined by electrospray ionization-mass spectrometry (ESI-MS), verifies these 13 residues in wild-type vSGLT. A fusion protein of vSGLT and green fluorescent protein, comprising a mass of over 90 kDa, was also successfully analyzed by ESI-MS. Reconstitution of purified vSGLT yields proteoliposomes active in Na(+)-dependent galactose uptake, with sugar preferences (galactose > glucose > fucose) reflecting those of wild-type vSGLT in vivo. Substrates are transported with apparent 1:1 stoichiometry and apparent K(m) values of 129 mm (Na(+)) and 158 microm (galactose). Freeze-fracture electron microscopy of functional proteoliposomes shows intramembrane particles of a size consistent with vSGLT existing as a monomer. We conclude that vSGLT is a suitable model for the study of sugar cotransporter mechanisms and structure, with potential applicability to the larger SGLT family of important sodium:solute cotransporters. It is further demonstrated that ESI-MS is a powerful tool for the study of proteomics of membrane transporters.  相似文献   
7.
The cerebroside-sulfate activator protein (CSAct or Saposin B) is a small water-soluble glycoprotein that plays an essential role in the metabolism of certain glycosphingolipids, especially sulfatide. Deficiency of CSAct in humans leads to sulfatide accumulation and neurodegenerative disease. CSAct activity can be measured in vitro by assay of its ability to activate sulfatide-sulfate hydrolysis by arylsulfatase A. CSAct has seven methionine residues and a mass of 8,845 Da when deglycosylated. Mildly oxidized, deglycosylated CSAct (+16 Da), separated from nonoxidized CSAct by reversed-phase high-performance liquid chromatography (RP-HPLC), showed significant modulation of the in vitro activity. Because oxidation partially protected against CNBr cleavage and could largely be reversed by treatment with dithiothreitol, it was concluded that the major modification was conversion of a single methionine to its sulfoxide. High-resolution RP-HPLC separated mildly oxidized CSAct into seven or more different components with shorter retention times than nonoxidized CSAct. Mass spectrometry showed these components to have identical mass (+16 Da). The shorter retention times are consistent with increased polarity accompanying oxidation of surface-exposed methionyl side chains, in general accordance with the existing molecular model. A mass-spectrometric CNBr mapping protocol allowed identification of five of the seven possible methionine-sulfoxide CSAct oxoforms. The most dramatic suppression of activity occurred upon oxidation of Met61 (26% of control) with other residues in the Q60MMMHMQ66 motif falling in the 30-50% activity range. Under conditions of oxidative stress, accumulation of minimally oxidized CSAct protein in vivo could perturb metabolism of sulfatide and other glycosphingolipids. This, in turn, could contribute to the onset and progression of neurodegenerative disease, especially in situations where the catabolism of these materials is marginal.  相似文献   
8.
PCR amplification of the CAG repeat in exon 1 of the IT15 gene is routinely undertaken to confirm a clinical diagnosis of Huntington disease (HD) and to provide predictive testing for at-risk relatives of affected individuals. Our studies have detected null alleles on the chromosome carrying the expanded repeat in three of 91 apparently unrelated HD families. Sequence analysis of these alleles has revealed the same mutation event, leading to the juxtaposition of uninterrupted CAG and CCG repeats. These data suggest that a mutation-prone region exists in the IT15 gene bounded by the CAG and CCG repeats and that caution should be exercised in designing primers that anneal to the region bounded by these repeats. Two of the HD families segregated null alleles with expanded uninterrupted CAG repeats at the lower end of the zone of reduced penetrance. The expanded repeats are meiotically unstable in these families, although this instability is within a small range of repeat lengths. The haplotypes of the disease-causing chromosomes in these two families differ, only one of which is similar to that reported previously as being specific for new HD mutations. Finally, no apparent mitotic instability of the uninterrupted CAG repeat was observed in the brain of one of the HD individuals.  相似文献   
9.
Membrane proteins drive and mediate many essential cellular processes making them a vital section of the proteome. However, the amphipathic nature of these molecules ensures their detailed structural analysis remains challenging. A versatile procedure for effective electrospray-ionization mass spectrometry (ESI-MS) of intact intrinsic membrane proteins purified using reverse-phase chromatography in aqueous formic acid/isopropanol is presented. The spectra of four examples, bacteriorhodopsin and its apoprotein from Halobacterium and the D1 and D2 reaction-center subunits from spinach thylakoids, achieve mass measurements that are within 0.01% of calculated theoretical values. All of the spectra reveal lesser quantities of other molecular species that can usually be equated with covalently modified subpopulations of these proteins. Our analysis of bovine rhodopsin, the first ESI-MS study of a G-protein coupled receptor, yielded a complex spectrum indicative of extensive molecular heterogeneity. The range of masses measured for the native molecule agrees well with the range calculated based upon variable glycosylation and reveals further heterogeneity arising from other covalent modifications. The technique described represents the most precise way to catalogue membrane proteins and their post-translational modifications. Resolution of the components of protein complexes provides insights into native protein/protein interactions. The apparent retention of structure by bacteriorhodopsin during the analysis raises the potential of obtaining tertiary structure information using more developed ESI-MS experiments.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号