首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   15篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   10篇
  2018年   15篇
  2017年   6篇
  2016年   9篇
  2015年   4篇
  2014年   11篇
  2013年   11篇
  2012年   19篇
  2011年   19篇
  2010年   13篇
  2009年   3篇
  2008年   13篇
  2007年   5篇
  2006年   11篇
  2005年   9篇
  2004年   4篇
  2003年   8篇
  2002年   8篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
1.
Compression-induced changes in the shape and volume of the chondrocyte nucleus   总被引:11,自引:0,他引:11  
Changes in cell shape and volume are believed to play a role in the process of mechanical signal transduction by chondrocytes in articular cartilage. One proposed pathway through which chondrocyte deformation may be transduced to an intracellular signal is through cytoskeletally mediated deformation of intracellular organelles, and more specifically, of the cell nucleus. In this study, confocal scanning laser microscopy was used to perform in situ three-dimensional morphometric analyses of the nuclei of viable condrocytes during controlled compression of articular cartilage explants from the canine patellofemoral groove. Unconfined compression of the tissue to a 15% surface-to-surface strain resulted in a significant decrease of chondrocyte height and volume by 14.7 ± 6.4 and 11.4 ± 8.4%, respectively, and of nuclear height and volume by 8.8 ± 6.2% and 9.8 ± 8.8%, respectively. Disruption of the actin cytoskeleton using cytochalasin D altered the relationship between matrix deformation and changes in nuclear height and shape, but not volume. The morphology and deformation behavior of the chondrocytes were not affected by cytochalasin treatment. These results suggest that the actin cytoskeleton plays an important role in the link between compression of the extracellular matrix and deformation of the chondrocyte nuclei and imply that chondrocytes and their nuclei undergo significant changes in shape and volume in vivo.  相似文献   
2.
A series of (±) -3-(4-aminophenyl) pyrrolidin-2,5-diones substituted in the 1-, 3- or 1,3- position with an aryl or long chain alkyl function are weak inhibitors of the metabolism of all-trans retinoic acid (RA) by rat liver microsomes (68-75% inhibition) compared with ketoconazole (85%). Further studies with the 1-cyclohexyl analogue (1) (IC 50 = 98.8 μM, ketoconazole, 22.15 μM) showed that it was not stereoselective in its inhibition. (±) - (1) was not an inhibitor of pig brain microsomal enzyme (ketoconazole, IC 50 = 20.9 μM), had little effect on human liver microsomal enzyme (19.3%, ketoconazole, 81.6%) or human placental microsomal enzyme (9.8%, ketoconazole 73.9%) but was a weak inhibitor of human and rat skin homogenates (52.6% and IC 50 = 211.6 μM respectively; ketoconazole, 38.8% and 85.95 μM). In RA-induced cell cultures of human male genital fibroblasts and HaCat cells, (±) - (1) was a weak inhibitor (c. 53% at 200 μM) whereas ketoconazole showed high potency (c. 65% at 0.625 μM and 0.25 μM respectively). The nature of the induced target enzyme is discussed.  相似文献   
3.
In a search for inhibitors of all-trans retinoic acid (RA)-metabolising enzymes as potential agents for the treatment of skin conditions and cancer we have examined 2-(4-aminophenylmethyl)-6-hydroxy-3,4-dihydronaphthalen-1(2H)-one (5). Compound (5) is a moderate inhibitor of RA-metabolising enzymes in mammalian cadaverous tissue microsomes and homogenates as well as RA-induced enzymes in cultured human genital fibroblasts and HaCat cells. Overall (5) was more potent than or equipotent with ketoconazole, a standard inhibitor, in the cadaverous systems but less active towards the RA-induced cell culture systems. Examination of the data suggests that RA-induction generates metabolising enzymes not present in the cadaverous systems, which are more susceptible to inhibition by ketoconazole than (5).  相似文献   
4.
Several studies have focused on the RAGE genetic background and have demonstrated that its polymorphisms affect the receptor's activity, expression, and downstream signaling. However, there is only little information regarding RAGE polymorphism in breast cancer. In the present study, the authors studied RAGE polymorphisms in 71 patients with breast cancer and 93 healthy women. RAGE –374T/A, –429T/C, and 63 bp Ins/del polymorphisms were analyzed using a hexaprimer amplification refractory mutation system PCR (H-ARMS-PCR). The results showed that RAGE polymorphisms are not associated with breast cancer in the current study population. Larger studies are required to confirm these data in other populations.  相似文献   
5.
Helicobacter pylori (H. pylori) causes gastric mucosa inflammation and gastric cancer mostly via several virulence factors. Induction of proinflammatory pathways plays a crucial role in chronic inflammation, gastric carcinoma, and H. pylori pathogenesis. Herbal medicines (HMs) are nontoxic, inexpensive, and mostly anti-inflammatory reminding meticulous emphasis on the elimination of H. pylori and gastric cancer. Several HM has exerted paramount anti-H. pylori traits. In addition, they exert anti-inflammatory effects through several cellular circuits such as inhibition of 5′-adenosine monophosphate-activated protein kinase, nuclear factor-κB, and activator protein-1 pathway activation leading to the inhibition of proinflammatory cytokines (interleukin 1α [IL-1α], IL-1β, IL-6, IL-8, IL-12, interferon γ, and tumor necrosis factor-α) expression. Furthermore, they inhibit nitrous oxide release and COX-2 and iNOS activity. The apoptosis induction in Th1 and Th17-polarized lymphocytes and M2-macrophagic polarization and STAT6 activation has also been exhibited. Thus, their exact consumable amount has not been revealed, and clinical trials are needed to achieve optimal concentration and their pharmacokinetics. In the aspect of bioavailability, solubility, absorption, and metabolism of herbal compounds, nanocarriers such as poly lactideco-glycolide-based loading and related formulations are helpful. Noticeably, combined therapies accompanied by probiotics can also be examined for better clearance of gastric mucosa. In addition, downregulation of inflammatory microRNAs (miRNAs) by HMs and upregulation of those anti-inflammatory miRNAs is proposed to protect the gastric mucosa. Thus there is anticipation that in near future HM-based formulations and proper delivery systems are possibly applicable against gastric cancer or other ailments because of H. pylori.  相似文献   
6.
7.
8.
Articular cartilage exhibits little intrinsic repair capacity, and new tissue engineering approaches are being developed to promote cartilage regeneration using cellular therapies. The goal of this study was to examine the chondrogenic potential of adipose tissue-derived stromal cells. Stromal cells were isolated from human subcutaneous adipose tissue obtained by liposuction and were expanded and grown in vitro with or without chondrogenic media in alginate culture. Adipose-derived stromal cells abundantly synthesized cartilage matrix molecules including collagen type II, VI, and chondroitin 4-sulfate. Alginate cell constructs grown in chondrogenic media for 2 weeks in vitro were then implanted subcutaneously in nude mice for 4 and 12 weeks. Immunohistochemical analysis of these samples showed significant production of cartilage matrix molecules. These findings document the ability of adipose tissue-derived stromal cells to produce characteristic cartilage matrix molecules in both in vitro and in vivo models, and suggest the potential of these cells in cartilage tissue engineering.  相似文献   
9.

Introduction  

Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair.  相似文献   
10.
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号