首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  2016年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Temperature is one of the most important ecological factors affecting species survival and distributions. Therefore, global climate change, involving increases in mean surface temperature and the occurrence of extreme weather events, may pose a substantial challenge to biodiversity. Whereas tropical ectotherms are believed to be very sensitive to climate change, temperate‐zone species may actually benefit from higher temperatures. However, as in temperate zones large parts of the year are unsuitable for growth and reproduction, seasonal time constraints may complicate matters. Against this background we here investigate the impact of simulated climate change, involving increased mean temperatures and heat waves, across developmental pathways of the butterfly Lycaena tityrus (Poda) (Lepidoptera: Lycaenidae). Increased temperatures speeded up development but decreased pupal mass as expected. However, we found no evidence for detrimental effects of increased temperatures or even simulated heat waves. Furthermore, patterns did not differ between indirectly and directly developing individuals, which are assumed to be more time constrained. Our findings support the notion that not all species will be detrimentally affected by climate change, and suggest that species attributes may be more important than potential time constraints imposed by different developmental pathways.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号