首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1196篇
  免费   128篇
  2024年   1篇
  2023年   10篇
  2022年   8篇
  2021年   31篇
  2020年   25篇
  2019年   27篇
  2018年   24篇
  2017年   41篇
  2016年   46篇
  2015年   81篇
  2014年   85篇
  2013年   89篇
  2012年   123篇
  2011年   99篇
  2010年   68篇
  2009年   77篇
  2008年   85篇
  2007年   97篇
  2006年   62篇
  2005年   56篇
  2004年   57篇
  2003年   33篇
  2002年   46篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有1324条查询结果,搜索用时 93 毫秒
1.
2.
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.  相似文献   
3.
Imperfection in the formation of the name Stormbergia dangershoeki Butler is taken as an example so as to warn future taxon authors to repeat it.  相似文献   
4.
When following the pattern of the disappearance of NH 4 + –N from ammonium sulfate applied to the flooded soil-rice plant system (field and greenhouse experiments) during a growing season, it was observed that the lowest NH 4 + –N level coincided with the highest value of NR activity in the leaves. Nitrate was detected in both the root and shoot systems of the rice plants and autotrophic nitrifiers (Nitrosomonas and Nitrobacter) were particularly abundant. Since it was also demonstrated in this work that the NR activity of rice plants grown with nitrate fertilization (growth chamber culture experiments) was inducible by its substrate, it can be assumed that NH 4 + –N oxidation takes place in the water-logged soil studied. Therefore, the occurrence of the nitrification process following NH 4 + –N fertilizer application can be predicted by thein vitro orin situ evaluation of the NR activity of the rice leaf as an indicator.  相似文献   
5.
Summary Symbiotic N2 fixation, NO 3 assimilation and protein accumulation in the shoots were measured simultaneously in alfalfa (Medicago sativa L.) grown in the field or in pots, in order to study how the balance between the two modes of nitrogen nutrition could be influenced by agronomic factors, such as harvest, mineral nitrogen supply and drought stress. During periods of rapid growth, fixation and assimilation may function simultaneously; they are antagonistic at the beginning and at the end of the growth cycle, when the nitrogen requirement of the plant is lower. When nitrogen nutrition does not limit growth, mineral nitrogen supply favours assimilation at the expense of fixation, but does not modify the amount of nitrogen accumulated, which is adjusted to the growth capacity of the plant. After cutting, nitrate assimilation compensated for the decrease in fixation and supplied the plant with the nitrogen required by the regrowth, the proliferation of which determined the fixation recovery. Drought stress decreased N2 fixation much more than NO 3 assimilation. The latter made growth recovery possible when water supply conditions became normal again. These results suggested the existence of an optimum level of nitrate assimilation, which differed depending on the age of the plants and allowed both maximum growth and fixing activity.  相似文献   
6.
It is now generally recognized that cell growth conditions in nature are often suboptimal compared to controlled conditions provided in the laboratory. Natural stresses like starvation and acidity are generated by cell growth itself. Other stresses like temperature or osmotic shock, or oxygen, are imposed by the environment. It is now clear that defense mechanisms to withstand different stresses must be present in all organisms. The exploration of stress responses in lactic acid bacteria has just begun. Several stress response genes have been revealed through homologies with known genes in other organisms. While stress response genes appear to be highly conserved, however, their regulation may not be. Thus, search of the regulation of stress response in lactic acid bacteria may reveal new regulatory circuits. The first part of this report addresses the available information on stress response in Lactococcus lactis.Acid stress response may be particularly important in lactic acid bacteria, whose growth and transition to stationary phase is accompanied by the production of lactic acid, which results in acidification of the media, arrest of cell multiplication, and possible cell death. The second part of this report will focus on progress made in acid stress response, particularly in L. lactis and on factors which may affect its regulation. Acid tolerance is presently under study in L. lactis. Our results with strain MG1363 show that it survives a lethal challenge at pH 4.0 if adapted briefly (5 to 15 minutes) at a pH between 4.5 and 6.5. Adaptation requires protein synthesis, indicating that acid conditions induce expression of newly synthesized genes. These results show that L. lactis possesses an inducible response to acid stress in exponential phase.To identify possible regulatory genes involved in acid stress response, we determined low pH conditions in which MG1363 is unable to grow, and selected at 37°C for transposition insertional mutants which were able to survive. About thirty mutants resistant to low pH conditions were characterized. The interrupted genes were identified by sequence homology with known genes. One insertion interrupts ahrC, the putative regulator of arginine metabolism; possibly, increased arginine catabolism in the mutant produces metabolites which increase the pH. Several other mutations putatively map at some step in the pathway of (p)ppGpp synthesis. Our results suggest that the stringent response pathway, which is involved in starvation and stationary phase survival, may also be implicated in acid pH tolerance.  相似文献   
7.
Plasmalemma ATPase from Jerusalem artichoke tubers was studiedin relation to the dormancy of tubers. After partial purification,one peptide of 110 kDa appeared on SDS PAGE electrophoresisfrom dormant and non-dormant materials. ATPase specific activitywas twice higher on dormant material in the crude and solubilizedfractions, but was the same in both materials after partialpurification. Immunolabeling of this enzyme was made using aspecific antibody raised against the C terminal portion of theH+-ATPase from Arabidopsis thaliana. Immunolabeling was morepronounced in dormant material, in vitro and in situ. Severalworks had shown that the C terminal part of the enzyme couldbe involved in its regulation. The results presented are discussedin relation to the hypothesis according to which an internaleffector could modulated the plasmalemma ATPase activity, duringdormancy breaking. (Received October 25, 1993; Accepted September 6, 1994)  相似文献   
8.
9.

Questions

Rhododendron ponticum subsp. baeticum is an invasive shrub of growing concern in continental Europe, but little is known about its impact on native plant communities. Here we ask: do environmental conditions differ between forest stands invaded by it and uninvaded stands? Do these differences correlate with R. ponticum's cover? Are these differences associated with differences in taxonomic and functional diversity of vascular plant species of the herb layer? Can these vegetation changes be explained by the sorting of certain life-history traits by R. ponticum-induced environmental changes?

Location

Several forests invaded by R. ponticum in the French Atlantic domain.

Methods

We recorded vegetation composition and a number of environmental variables in 400-m2 plots that were established in 64 paired forest stands (32 invaded vs 32 uninvaded). We compiled traits from existing databases. We computed several metrics of taxonomic and functional diversity. We compared environmental variables and diversity metrics between invaded and uninvaded stands. We used correlation and regression analyses to relate them with R. ponticum's cover. We ran RLQ and fourth-corner analyses to explore the relationships between R. ponticum invasion, environmental variables, species traits, and vegetation composition.

Results

Independent of its abundance, R. ponticum invasion was associated with lower light arrival at the forest floor and increased litter thickness. Concomitantly, species richness and diversity and trait diversity were reduced. The major driver of species assemblages was soil pH, which strongly interacted with the invasion gradient. R. ponticum did not sort species according to traits associated with shade tolerance and thick-litter tolerance. However, tree and shrub saplings were more abundant in invaded than uninvaded stands, at the expense of graminoid and fern species.

Conclusions

As R. ponticum becomes the dominant shrub, it exerts new selection forces on life-history traits of extant species, mostly via reduced light availability, increased litter thickness, and physical competition, thereby reducing taxonomic and functional diversity of the herb layer, without impeding tree and shrub self-regeneration, at least in the short term.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号