首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2010年   1篇
  1992年   1篇
排序方式: 共有8条查询结果,搜索用时 19 毫秒
1
1.
Variations in the preferred temperatures during the rest periods of Grammostola rosea Walckenaer and Paraphysa parvula Pocock, two mygalomorph spiders occupying different habitats in central Chile, are analyzed. The former inhabits arid and semi‐arid lowland near plant communities, composed of shrubs (evergreens with small leathery leaves) and small trees; the latter is found in the central mountains of the Chilean Andes, above 2000 m.a.s.l. The preferred temperatures of these spiders at different times of day and exposure to cold (15 °C) and warm (25 °C) acclimation temperatures are compared. Body mass does not affect the preferred temperature of the larger spider G. rosea, although P. parvula, a spider with half of the body mass of G. rosea, shows a decrease in preferred temperature with body mass. This can be explained by a higher plasticity and thermal sensitivity of the smaller species as result of increased surface : volume ratio. The preferred temperature increases with the hour of the day under both acclimation conditions in P. parvula and in cold‐acclimated G. rosea, which is likely associated with crepuscular and nocturnal behaviour in both species. Grammostola rosea shows temperature preferences lower than those of P. parvula under both acclimation conditions. The increase of the acclimation temperature from 15 to 25 °C results in an increment of 2–3 °C in the preferred temperature of P. parvula but only 0.2 °C in that of G. rosea. Two contrasting lifestyle strategies are found: a small mygalomorph spider with phenotypic plasticity and adaptation to the fluctuating environment of high altitude, and a large mygalomorph spider with higher thermal inertia adapted to the more stable environment of lowlands.  相似文献   
2.
Global change includes multiple stressors to natural ecosystems ranging from direct climate and land‐use impacts to indirect degradation processes resulting from fire. Humid tropical forests are vulnerable to projected climate change and possible synergistic interactions with deforestation and fire, which may initiate a positive feedback to rising atmospheric CO2. Here, we present results from a multifactorial impact analysis that combined an ensemble of climate change models with feedbacks from deforestation and accidental fires to quantify changes in Amazon Basin carbon cycling. Using the LPJmL Dynamic Global Vegetation Model, we modelled spatio‐temporal changes in net biome production (NBP); the difference between carbon fluxes from fire, deforestation, soil respiration and net primary production. By 2050, deforestation and fire (with no CO2 increase or climate change) resulted in carbon losses of 7.4–20.3 Pg C with the range of uncertainty depending on socio‐economic storyline. During the same time period, interactions between climate and land use either compensated for carbon losses due to wetter climate and CO2 fertilization or exacerbated carbon losses from drought‐induced forest mortality (?20.1 to +4.3 Pg C). By the end of the 21st century, depending on climate projection and the rate of deforestation (including its interaction with fire), carbon stocks either increased (+12.6 Pg C) or decreased (?40.6 Pg C). The synergistic effect of deforestation and fire with climate change contributed up to 26–36 Pg C of the overall decrease in carbon stocks. Agreement between climate projections (n=9), not accounting for deforestation and fire, in 2050 and 2098 was relatively low for the directional change in basin‐wide NBP (19–37%) and aboveground live biomass (13–24%). The largest uncertainty resulted from climate projections, followed by implementation of ecosystem dynamics and deforestation. Our analysis partitions the drivers of tropical ecosystem change and is relevant for guiding mitigation and adaptation policy related to global change.  相似文献   
3.
Despite the obvious benefit of an immune system, its efficacy against pathogens and parasites may show great variation among individuals, populations and species. Understanding the causes of this variation is becoming a central theme in ecology. Many biotic and abiotic factors are known to influence immunocompetence (temperature, age, etc.). However, for a given age, size among individuals varies, probably as a result of accumulated resources. Thus, these variable resources could be allocated to immune defence and, consequently, body size may explain part of the variation in immune responsiveness. However, the influence of body size on immune defence is often overlooked. The present study investigates variations in haemocyte count and phenoloxidase activity in larvae of the phytophagous vine moth Eupoecilia ambiguella Hübner of the same age, although differing in body size. The measurements of immune function are made both when the insects are immunologically naïve and 24 h after a bacterial immune challenge. The base levels of these immune parameters do not covary with body size in naïve larvae. After the bacterial immune challenge, more haemocytes and phenoloxidase enzyme are mobilized, and the mobilization of these immune effectors is correlated positively with individual body size. Thus, larger larvae exhibit higher immunocompetence than smaller ones, suggesting that smaller larvae might be more vulnerable to infection. These results suggest that body size is probably an underestimated variable, which nevertheless modulates the insect immune system and should thus be considered as a covariate in insect immune system measurement. It is recommended therefore, that body size should be taken into account in ecological immunity studies with insects. © 2013 The Royal Entomological Society  相似文献   
4.
1. Zooplankton are important in transferring dietary nutrients, including polyunsaturated fatty acids (PUFA), up through aquatic food webs. 2. We tested the hypothesis that the taxonomic composition of zooplankton affects the retention and subsequent transfer of PUFA from upwards through the food web. Using laboratory experiments, we investigated dietary PUFA accumulation and bioconversion capacities of six cladoceran species (Ceriodaphnia sp., Daphnia longispina, Daphnia magna, Daphnia pulex, Scapholeberis mucronata and Simocephalus vetulus) fed on two diets (Scenedesmus obliquus and Cryptomonas sp.) that differed in their PUFA profiles. We performed experiments at two different temperatures (14 and 20 °C) to assess the role of temperature in the trophic transfer of PUFA. 3. There was little variation in the concentrations of PUFA in these cladocerans which were controlled by dietary PUFA supply. Moreover, as expected, the concentrations of PUFA in all cladoceran species were higher at low temperature. 4. However, even if the composition of PUFA in the cladoceran species generally corresponded to that in their diet, preferential accumulation of some PUFA was recorded in all these taxa. When fed on a highly unsaturated fatty acid‐deficient diet, all the cladocerans showed some ability to convert C18‐PUFA into arachidonic acid and eicosapentaenoic acid. Interspecific variation in the ability to accumulate and bioconvert PUFA in cladocerans was more pronounced at low temperature (14 °C) for both diets. 5. Our results strongly suggest that in heterogeneous habitats with food partitioning between co‐existing cladocerans, foraging behaviour may affect the transfer of PUFA more strongly than interspecific variation in accumulating and/or bioconverting dietary PUFA.  相似文献   
5.
1. Dam presence is commonly associated with strong accumulation of polluted sediments. In spite of this context of multiple stressors, physical effects are often solely considered in the ecological assessment of the dam impacts. 2. We studied four ‘reservoir/downstream reach’ systems differing in levels of sediment contamination in reservoirs. Using assemblages and biotrait (i.e. ecological or biological attribute) responses of macroinvertebrate communities and leaf litter breakdown, we examined the individual effects and potential interactions between sediment contamination and dam presence along the gradient of ecotoxic pressure. 3. Leaf breakdown rates ranged from 0.0044° per day in the most contaminated reservoir to 0.0120° per day in the reference reservoir. Comparisons of community trait profiles among reservoirs highlighted a gradient of trait responses to sediment contamination. 4. In the absence of toxic contamination, the dam‐induced modifications in biotraits of invertebrate assemblages were not related to a reduction of leaf litter breakdown. Conversely, contaminated sediment in reservoir induced strong functional disturbances (i.e. bioecological shifts and reduction of leaf litter breakdown) downstream of dams. 5. Key biotrait categories positively related to leaf litter breakdown rate have been identified. They corresponded mainly to shredders and/or small‐sized (<0.5 cm) insects, using aquatic (e.g. crawlers) or aerial (e.g. fliers) active dispersal strategies. In addition, trait categories positively correlated to contamination level have been considered as ‘response’ traits. They corresponded to large‐sized (>4 cm) species, having several generations per year (polyvoltin), using asexual reproduction and/or disseminating by drift (aquatic, passive). 6. In the current context of ecological continuity restoration, this study has identified the risks associated with the presence of historical contamination in the run‐of‐river reservoirs for downstream ecosystem health.  相似文献   
6.
7.
The central issue of this essay is the problem of how multicellular organisms develop and maintain the complex architecture and intricate shape of tissues and organs. The concepts pattern formation, morphogenesis and differentiation are defined and discussed suggesting a distinction between processes that underlie uniformity (e.g. basic body plans) and those underlying inter- and intra-species variation. The initial stage of limb bone development--the formation of the mesenchymal condensation--is described in detail. On the basis of these data and many additional example from other developmental systems, the central role of continuous cell-ECM interactions in the generation of form is deduced. Evidence is provided as to the leading role of the mesenchymal-fibroblast-like cells in sculpturing tissue and organ architecture. It is proposed that a group of cells within their ECM, rather than the single cell, is the functional unit relevant to the generation of form. The continuous cell-ECM interactions lead to the generation of form not by a detailed obligate pathway, but rather by a process of 'selective stabilization' (Kirschner & Mitchison, 1986), i.e. a gradual organization into more stable structures, where existing structural configuration serve to increase the likelihood of certain configurations and reduce that of others. Data are quoted to support the notion that even cell division does not erase all the structural information imprinted in the cell. The role of the metazoan genome in morphogenesis is discussed in the light of the process of selective stabilization.  相似文献   
8.
ABSTRACT

The Skylark Alauda arvensis is a territorial species of open landscape in which pairs settle in stable and adjacent territories during the breeding season. Due to the heterogeneity of the habitat, territories are gathered in patches spaced by a few kilometres, in which each male produces very long and complex flight songs as a part of the territorial behaviour. We showed that, in a given patch, all the males (neighbours) share some particular sequences of syllables in their songs, whereas males settled in different patches (strangers) have almost no sequences in common. Such a phenomenon is known as microdialect. To test the hypothesis that these shared sequences support a group signature, we made playback experiments with “chimeric” signals: songs of strangers where the sequences shared by neighbours were artificially inserted. Behavioural responses to playbacks indicated a neighbour-stranger discrimination consistent with the dear enemy phenomenon, i.e. a reduced aggression toward neighbours compared to strangers. Furthermore, the same level of responses, observed when a “chimeric” song and a neighbour song were broadcast, indicated that shared sequences are recognised and identified as markers of the neighbourhood identity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号