首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   17篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   7篇
  2009年   10篇
  2008年   5篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1966年   1篇
排序方式: 共有157条查询结果,搜索用时 569 毫秒
1.
2.
Genomic DNA fragments encoding beta-glucosidase activities of the thermophilic actinomycete Microbispora bispora were cloned into Escherichia coli. Transformants expressing beta-glucosidase activity were selected by their ability to hydrolyze the fluorogenic substrate 4-methylumbelliferyl-beta-D-glucoside. Two genes encoding beta-glucosidase activity were isolated and distinguished by restriction analysis, Southern hybridization, and the substrate specificities of the encoded enzymes. One gene, bglB, encoded a beta-glucosidase that was expressed intracellularly in E. coli. It exhibited a molecular mass of approximately 52,000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and 51,280 Da by nondenaturing gradient PAGE, a pI of 4.6, and temperature and pH optima of 60 degrees C and 6.2, respectively. Cloned BglB showed greater activity against cellobiose than against aryl-beta-D-glucosides and was thermostable, retaining about 70% of its activity after 48 h at 60 degrees C. BglB activity is activated two- to threefold in the presence of 2 to 5% (0.1 to 0.3 M) glucose. The DNA sequence of the 2.2-kb insert carrying bglB has been determined. An open reading frame which codes for a protein of 473 amino acids with a predicted molecular mass of 52,227 Da showed significant homology (40 to 47% identity) with beta-glucosidases from glycosal hydrolase family 1.  相似文献   
3.
A double-antibody sandwich enzyme-linked immunosorbent assay was developed for quantifying cellobiohydrolase I (CBH I) in crude preparations of the cellulase complex from Trichoderma reesei. The other enzymes (endoglucanase and β-glucosidase) in this complex and other ingredients in culture broth did not interfere with this assay. The antibody configuration that resulted in the highest specificity for the assay of CBH I employed a monoclonal antibody to coat wells in polystyrene plates and peroxidase-labeled polyclonal antibody to detect cellobiohydrolase bound to the immobilized monoclonal antibody. Previously, procedures have not been available for the direct assay of CBH I activity in the presence of the other enzymes in the complex, and current indirect procedures are cumbersome and inaccurate. The direct procedure described here is highly specific for CBH I and useful for quantifying this enzyme in the range of 0.1 to 0.8 μg/ml.  相似文献   
4.
Mechanisms of DNA oxidation   总被引:1,自引:0,他引:1  
Oxidative damage of DNA caused by a variety of chemical and physical agents appears to be linked to cancer. However, it is becoming increasingly clear that endogenous generation of oxidants, such as hydroxyl radical and peroxynitrite, lead to oxidation of DNA, and this may cause cancer in individuals where no obvious exposure to chemical or physical agents known to be carcinogenic has occurred. The mechanisms for generation of these two oxidants in living organisms will be discussed and their reactivities with DNA to produce oxidized products (e.g., 8-oxo-dG) will be presented with special emphasis on the individual characteristics of the generation and reactivity of each oxidant.  相似文献   
5.
Elevated levels of interleukin-1 (IL-1) have been shown to amplify the inflammatory response against periodontopathogenic bacteria. In humans, polymorphisms in the IL1A and IL1B genes are the most well-studied genetic polymorphisms associated with periodontal disease (PD). In contrast to human, there is a lack of knowledge on the genetic basis of canine PD. A case–control study was conducted in which a molecular analysis of dog IL1A and IL1B genes was performed. Of the eight genetic variants identified, seven in IL1A gene and one in IL1B gene, IL1A/1_g.388A >C and IL1A/1_g.521T >A showed statistically significant differences between groups (adjusted OR (95% CI): 0.15 (0.03–0.76), P= 0.022; 5.76 (1.03–32.1), P= 0.046, respectively). It suggests that in the studied population the IL1A/1_g.388C allele is associated with a decreased PD risk, whereas the IL1A/1_g.521A allele can confer an increased risk. Additionally, the IL1A/2_g.515G >T variation resulted in a change of amino acid, i.e. glycine to valine. In silico analysis suggests that this change can alter protein structure and function, predicting it to be deleterious or damaging. This work suggests that IL1 genetic variants may be important in PD susceptibility in canines.  相似文献   
6.

Background

The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene.

Results

Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo.

Conclusions

Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.
  相似文献   
7.
8.
Abstract: Red‐rumped agoutis (Dasyprocta leporina) are important seed dispersers/predators of Neotropical large‐seeded plants. Several species of seeds cached by agoutis have an edible reward, in contrast to temperate rodent‐dispersed diaspores. The quick meal hypothesis states that the presence of a reward such as edible pulp will enhance the efficiency of rodents as seed disperses by satiating the animal and, consequently, reducing seed predation and enhancing hoarding. In this study, this hypothesis was tested using as the reference system the pulp and seeds of Hymenaea courbaril. Seeds with and without pulp were offered to agoutis and the behaviour of each individual was recorded. Since the probability of predation and hoarding were complementary, we used the probability of predation. The proportion of agoutis that preyed on at least one seed was similar for seeds with (42.8% of individuals) and without (40.0% of individuals) pulp. In agoutis that preyed upon at least one seed, the probability that they killed a seed did not differ between seeds with (0.17 ± 0.03) and without (0.20 ± 0.08) pulp. Hence, these results do not support the ‘quick meal hypothesis’.  相似文献   
9.
Abstract In several plants, extrafloral nectaries (EFN) are located close to the reproductive structures, suggesting that ants may act as a defence against specialized seed predators that overcome chemical defences. Alternatively, ants may also deter herbivores in a generalized manner, thereby protecting the whole plant. In this work, we examined the relationship between the chemically protected weed Crotalaria pallida Ait. (Leguminosae) that bears EFN, its specialized seed predator, the larvae of the arctiid moth Utetheisa ornatrix L. (Arctiidae) and ants. We tested two hypotheses related to the type of deterrence caused by ants. The Seed Predator Deterrence Hypothesis predicts that ant deterrence is directed primarily towards herbivores that destroy seeds and other reproductive structures, without attacking herbivores on vegetative structures. The General Deterrence Hypothesis states that ants are general in their effects, equally deterring herbivores in vegetative and reproductive structures. Our results supported the predictions of the Seed Predator Deterrence Hypothesis, namely, that (i) ant activity on EFN was related to the vulnerability of reproductive structures to attack by U. ornatrix; (ii) ant patrolling was restricted almost entirely to racemes; (iii) ants removed termites used as baits more frequently on racemes than on leaves; and (iv) U. ornatrix larvae were often expulsed from the racemes. These results indicate that EFN can act as another deterrent mechanism in chemically protected plants by promoting the expulsion of specialist seed predators.  相似文献   
10.

Background  

Both direct and indirect interactions determine molecular recognition of ligands by proteins. Indirect interactions can be defined as effects on recognition controlled from distant sites in the proteins, e.g. by changes in protein conformation and mobility, whereas direct interactions occur in close proximity of the protein's amino acids and the ligand. Molecular recognition is traditionally studied using three-dimensional methods, but with such techniques it is difficult to predict the effects caused by mutational changes of amino acids located far away from the ligand-binding site. We recently developed an approach, proteochemometrics, to the study of molecular recognition that models the chemical effects involved in the recognition of ligands by proteins using statistical sampling and mathematical modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号