首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2801篇
  免费   192篇
  2023年   12篇
  2022年   21篇
  2021年   69篇
  2020年   58篇
  2019年   59篇
  2018年   48篇
  2017年   55篇
  2016年   96篇
  2015年   140篇
  2014年   166篇
  2013年   207篇
  2012年   268篇
  2011年   255篇
  2010年   148篇
  2009年   111篇
  2008年   203篇
  2007年   159篇
  2006年   148篇
  2005年   141篇
  2004年   118篇
  2003年   104篇
  2002年   80篇
  2001年   19篇
  2000年   14篇
  1999年   22篇
  1998年   22篇
  1997年   15篇
  1996年   8篇
  1995年   14篇
  1994年   11篇
  1993年   10篇
  1992年   5篇
  1991年   9篇
  1990年   7篇
  1989年   5篇
  1988年   10篇
  1984年   7篇
  1982年   8篇
  1981年   8篇
  1978年   7篇
  1976年   6篇
  1975年   9篇
  1974年   8篇
  1973年   7篇
  1971年   4篇
  1968年   11篇
  1966年   4篇
  1964年   5篇
  1962年   5篇
  1957年   5篇
排序方式: 共有2993条查询结果,搜索用时 15 毫秒
1.
An oligomycin-sensitive F1F0-ATPase isolated from bovine heart mitochondria has been reconstituted into phospholipid vesicles and pumps protons. this preparation of F1F0-ATPase contains 14 different polypeptides that are resolved by polyacrylamide gel electrophoresis under denaturing conditions, and so it is more complex than bacterial and chloroplast enzymes, which have eight or nine different subunits. The 14 bovine subunits have been characterized by protein sequence analysis. They have been fractionated on polyacrylamide gels and transferred to poly(vinylidene difluoride) membranes, and N-terminal sequences have been determined in nine of them. By comparison with known sequences, eight of these have been identified as subunits beta, gamma, delta, and epsilon, which together with the alpha subunit form the F1 domain, as the b and c (or DCCD-reactive) subunits, both components of the membrane sector of the enzyme, and as the oligomycin sensitivity conferral protein (OSCP) and factor 6 (F6), both of which are required for attachment of F1 to the membrane sector. The sequence of the ninth, named subunit e, has been determined and is not related to any reported protein sequence. The N-terminal sequence of a tenth subunit, the membrane component A6L, could be determined after a mild acid treatment to remove an alpha-N-formyl group. Similar experiments with another membrane component, the a or ATPase-6 subunit, caused the protein to degrade, but the protein has been isolated from the enzyme complex and its position on gels has been unambiguously assigned. No N-terminal sequence could be derived from three other proteins. The largest of these is the alpha subunit, which previously has been shown to have pyrrolidonecarboxylic acid at the N terminus of the majority of its chains. The other two have been isolated from the enzyme complex; one of them is the membrane-associated protein, subunit d, which has an alpha-N-acetyl group, and the second, surprisingly, is the ATPase inhibitor protein. When it is isolated directly from mitochondrial membranes, the inhibitor protein has a frayed N terminus, with chains starting at residues 1, 2, and 3, but when it is isolated from the purified enzyme complex, its chains are not frayed and the N terminus is modified. Previously, the sequences at the N terminals of the alpha, beta, and delta subunits isolated from F1-ATPase had been shown to be frayed also, but in the F1F0 complex they each have unique N-terminal sequences.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
2.
Rawitscher -Kunkel , Erika , and L. Machlis . (U. California, Berkeley.) The hormonal integration of sexual reproduction in Oedogonium. Amer. Jour. Bot. 49 (2) : 177–183. Illus. 1962.—Sexual reproduction in a heterothallic, nannandrous species of Oedogonium was investigated cytologically and physiologically. Several new observations are reported. Oogonial mother cells release a substance which attracts androspores to them. The androspores, when attached to the oogonial mother cells, grow in well-defined directions apparently in response to a hormone originating in the oogonial mother cells. An oogonial mother cell divides into an oogonium and a suffultory cell only after the attached androspores complete their development into dwarf males, each bearing an antheridium. Presumably the developing dwarf males provide a chemical stimulus for the division of the oogonial mother cell. During development, the oogonia become enveloped in a massive gel which also encases the antheridia cut off at the apical ends of the dwarf male plants. The gel appears to function as a sperm trap, preventing the dissemination of the sperm into the surrounding liquid. The sperm are attracted to the protoplasmic papilla which briefly protrudes through the oogonial pore indicating the operation of a second chemotactic agent.  相似文献   
3.
Platelet-derived growth factor D (PDGF-D) is the most recently discovered member of the PDGF family. PDGF-D signals through PDGF receptor β, but its biological role remains largely unknown. In contrast to other members of the PDGF family of growth factors, which have been extensively investigated using different knockout approaches in mice, PDGF-D has until now not been characterized by gene inactivation in mice. Here, we present the phenotype of a constitutive Pdgfd knockout mouse model (Pdgfd-/-), carrying a LacZ reporter used to visualize Pdgfd promoter activity. Inactivation of the Pdgfd gene resulted in a mild phenotype in C57BL/6 mice, and the offspring was viable, fertile and generally in good health. We show that Pdgfd reporter gene activity was consistently localized to vascular structures in both postnatal and adult tissues. The expression was predominantly arterial, often localizing to vascular bifurcations. Endothelial cells appeared to be the dominating source for Pdgfd, but reporter gene activity was occasionally also found in subpopulations of mural cells. Tissue-specific analyses of vascular structures revealed that NG2-expressing pericytes of the cardiac vasculature were disorganized in Pdgfd-/- mice. Furthermore, Pdgfd-/- mice also had a slightly elevated blood pressure. In summary, the vascular expression pattern together with morphological changes in NG2-expressing cells, and the increase in blood pressure, support a function for PDGF-D in regulating systemic arterial blood pressure, and suggests a role in maintaining vascular homeostasis.  相似文献   
4.
The cellular retinoic acid binding protein is thought to be involved in the retinoic-acid-mediated signal transduction pathway. We have isolated the mouse cellular retinoic acid binding protein cDNA from an embryonal-carcinoma-derived cell line by using differential cDNA cloning strategies. In situ hybridization on sections of mouse embryos of various developmental stages indicated that the cellular retinoic acid binding protein gene, which we localized on mouse chromosome 9, is preferentially expressed in a subpopulation of neurectodermal cells. This restricted expression pattern suggests an important role for cellular retinoic acid binding protein in murine neurogenesis.  相似文献   
5.
Summary Because the increase in sodium excretion during left atrial distension in conscious dogs is abolished after chronic cardiac denervation, we have investigated whether this is a result of the disappearance of specific atrial granules. Electron microscopy and light-microscopical and ultrastructural immunohistochemistry of canine atria show that atrial granules displaying immunoreactivity for cardiac hormones of the cardiodilatin/atrial natriuretic polypeptide (CDD/ANP) family are still present in denervated left and right atria, although reduced in quantity. It is concluded that the atrial-induced natriuresis is not only related to the existence of specific atrial granules. The functional link between atrial-induced natriuresis provoked by atrial distension and the release of atrial polypeptide hormones remains uncertain because the denervated heart can secrete CDD although the diuretic-natriuretic effect is altered.  相似文献   
6.
7.
Polymorphonuclear leukocytes contain an oxidase system that can be activated to produce superoxide radicals and hydrogen peroxide. A nonmitochondrial b cytochrome, functioning in the generation of these oxygen species, has been purified to apparent homogeneity from human polymorphonuclear phagocytes. After solubilization of the cytochrome with Triton X-100, the cell extract was subsequently chromatographed on Blue Sepharose and Sephacryl S-300. The final preparation was maximally purified 170-fold with a specific content of 5.33 +/- 2.03 nmol mg-1 of protein (mean +/- S.D.; n = 7) and a yield of 21 +/- 13% (n = 5). The apparent molecular mass of the nondenatured cytochrome was estimated by gel filtration to be 235 kDa. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a single polypeptide was found with a molecular mass of 127 kDa. From the pyridine hemochrome spectrum 1 protoheme IX/polypeptide was calculated. The light absorbance bands of the dithionite-reduced cytochrome were found to be at 558.5 (alpha), 529 (beta), and 426 nm (Soret), and that of the oxidized cytochrome at 413.5 nm. The difference absorbance coefficients are delta epsilon (426.5 - 440 nm) = 160.6 +/- 11 mM-1 cm-1 and delta epsilon (558.5 - 542 nm) = 29.3 +/- 2 mM-1 cm-1 (mean +/- S.D.; n = 5). Carbon monoxide binds to the cytochrome in a time-dependent fashion (maximum binding after 50-60 min). The midpoint potential of the solubilized nonpurified cytochrome is identical to the cytochrome in situ (Em7.0 = -218 +/- 7 mV (mean +/- S.D.; n = 5)). However, purified cytochrome b shows a significantly decreased midpoint potential, estimated at -407 +/- 18 mV (n = 4). The protein does not contain noncovalently bound FAD or FMN, and no spectral evidence was obtained for the presence of covalently bound flavin. Preliminary amino acid analysis of the cytochrome shows a high content of hydrophilic residues.  相似文献   
8.
9.
Bostrychietum auf den Philippinen   总被引:1,自引:1,他引:0  
Erika Post 《Hydrobiologia》1966,27(3-4):344-352
  相似文献   
10.
Summary Chlorophyll a, phytoplankton species composition and carbon (PPC) estimated from cell-counts, were monitored together with hydrographic parameters and nutrients in the upper 50 m of Balsfjord (ca. 70° N), northern Norway between 08 February and 29 June 1982. Sediment traps were placed at 10, 50, 100, and 170 m (10 m above bottom) for intervals of 5–20 days during the study period. Trap contents were analyzed for phytoplankton as above; dry weight, particulate organic material (POM), particulate organic nitrogen and carbon (PON and POC), ash, and particulate phosphorus were also measured. The phytoplankton community exhibited three main phases: During the first (02–15 April, chiefly surface biomass) and the second (20 April–10 May, deep biomass-maximum and spring bloom peak) periods, Phaeocystis pouchetii dominated biomass (ca. 50% of PPC) followed by vegetative cells of Chaetoceros socialis. In the third period (10 May onwards, characterized by surface estuarinecir-culation), dino- and microflagellates dominated the low post-bloom biomass. Protozooplankton comprising tintinnids, other ciliates and heterotrophic dinoflagellates increased in abundance. Vegetative cells of phytoplankton were scarce in trap collections at 50 m or below; resting cells of Chaetoceros comprised nearly all the intact sedimenting phytoplankton. Krill faeces accounted for >90% by volume of the total faecal material trapped, despite a >21 biomass dominance of copepods in the fjord. The greatest sedimentation rates of krill faeces were at > 100 m, reflecting the downward migration of krill during the day. In all, 2–3 g Cm–2 of krill faeces were collected, representing ca. twice that from intact phytoplankton cells. POC in the traps at 50 m was ca. 11 gm–2, accounting for ca. 17% of the estimated primary production during the study period. As the secondary production is high, a large proportion of the production of P. pouchetii must be grazed by herbivores. Copepod faeces are probably remineralized in the euphotic zone, while those of krill provide the major coupling between the pelagial and the benthos. The implications of such a sedimentation model for partitioning energy flow between the pelagial and the benthos is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号