首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  2021年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   7篇
  2005年   2篇
  2004年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Wheat contains three different classes of proteinaceous xylanase inhibitors (XIs), i.e. Triticum aestivum xylanase inhibitors (TAXIs) xylanase‐inhibiting proteins (XIPs), and thaumatin‐like xylanase inhibitors (TLXIs) which are believed to act as a defensive barrier against phytopathogenic attack. In the absence of relevant data in wheat kernels, we here examined the response of the different members of the XI protein population to infection with a ΔTri5 mutant of Fusarium graminearum, the wild type of which is one of the most important wheat ear pathogens, in early developing wheat grain. Wheat ears were inoculated at anthesis, analyzed using 2‐D DIGE and multivariate analysis at 5, 15, and 25 days post anthesis (DPA), and compared with control samples. Distinct abundance patterns could be distinguished for different XI forms in response to infection with F. graminearum ΔTri5. Some (iso)forms were up‐regulated, whereas others were down‐regulated. This pathogen‐specific regulation of proteins was mostly visible at five DPA and levelled off in the samples situated further from the inoculation point. Furthermore, it was shown that most identified TAXI‐ and XIP‐type XI (iso)forms significantly increased in abundance from the milky (15 DPA) to the soft dough stages (25 DPA) on a per kernel basis, although the extent of increase differed greatly. Non‐glycosylated XIP forms increased more strongly than their glycosylated counterparts.  相似文献   
2.
The YscC secretin is a major component of the type III protein secretion system of Yersinia enterocolitica and forms an oligomeric structure in the outer membrane. In a mutant lacking the outer membrane lipoprotein YscW, secretion is strongly reduced, and it has been proposed that YscW plays a role in the biogenesis of the secretin. To study the interaction between the secretin and this putative pilot protein, YscC and YscW were produced in trans in a Y. enterocolitica strain lacking all other components of the secretion machinery. YscW expression increased the yield of oligomeric YscC and was required for its outer membrane localization, confirming the function of YscW as a pilot protein. Whereas the pilot-binding site of other members of the secretin family has been identified in the C terminus, a truncated YscC derivative lacking the C-terminal 96 amino acid residues was functional and stabilized by YscW. Pulse-chase experiments revealed that approximately 30 min were required before YscC oligomerization was completed. In the absence of YscW, oligomerization was delayed and the yield of YscC oligomers was strongly reduced. An unlipidated form of the YscW protein was not functional, although it still interacted with the secretin and caused mislocalization of YscC even in the presence of wild-type YscW. Hence, YscW interacts with the unassembled YscC protein and facilitates efficient oligomerization, likely at the outer membrane.  相似文献   
3.
In the first 6 months of the H1N1 swine-origin influenza virus (S-OIV) pandemic, the vast majority of infections were relatively mild. It has been postulated that mutations in the viral genome could result in more virulent viruses, leading to a more severe pandemic. Mutations E627K and D701N in the PB2 protein have previously been identified as determinants of avian and pandemic influenza virus virulence in mammals. These mutations were absent in S-OIVs detected early in the 2009 pandemic. Here, using reverse genetics, mutations E627K, D701N, and E677G were introduced into the prototype S-OIV A/Netherlands/602/2009, and their effects on virus replication, virulence, and transmission were investigated. Mutations E627K and D701N caused increased reporter gene expression driven by the S-OIV polymerase complex. None of the three mutations affected virus replication in vitro. The mutations had no major impact on virus replication in the respiratory tracts of mice and ferrets or on pathogenesis. All three mutant viruses were transmitted via aerosols or respiratory droplets in ferrets. Thus, the impact of key known virulence markers in PB2 in the context of current S-OIVs was surprisingly small. This study does not exclude the possibility of emergence of S-OIVs with other virulence-associated mutations in the future. We conclude that surveillance studies aimed at detecting S-OIVs with increased virulence or transmission should not rely solely on virulence markers identified in the past but should include detailed characterization of virus phenotypes, guided by genetic signatures of viruses detected in severe cases of disease in humans.The new H1N1 swine-origin influenza virus (S-OIV) recently emerged to cause the first influenza pandemic in 40 years (2). The S-OIV presumably emerged from pigs, as its genome was shown to consist of six gene segments of “triple-reassortant” swine viruses and two of “Eurasian lineage” swine viruses (9). The start of the S-OIV pandemic has been relatively mild, with a clinical spectrum ranging from mild upper respiratory tract illness to sporadic cases of severe pneumonia leading to acute respiratory distress syndrome (22). As of 15 November 2009, worldwide, more than 206 countries have reported laboratory-confirmed cases of S-OIV infection, including over 6,770 deaths (32).In previous influenza pandemics, such as the Spanish influenza pandemic of 1918 and the Hong Kong influenza pandemic of 1968, a first wave of cases of relatively mild illnesses was followed by more severe subsequent waves (29). The reason for this increased severity has remained largely unknown, but one possible explanation could be that the pandemic viruses required further adaptation to the human host, resulting in the emergence of viruses that were more virulent than those of the first wave. Such adaptive changes could occur by gene reassortment between cocirculating influenza A viruses or by mutation.In the past decade, determinants of influenza A virus virulence have been mapped using reverse genetics with a variety of pandemic, epidemic, and zoonotic influenza viruses. Mutations affecting virulence and host range have frequently been mapped to hemagglutinin (HA) and neuraminidase (NA) in relation to their interaction with sialic acids, the virus receptors on host cells (11, 18, 30). Nonstructural protein 1 (NS1) has been implicated in the virulence of highly pathogenic avian influenza (HPAI) virus H5N1 and the 1918 H1N1 virus, as the NS1 proteins of these viruses were shown to act as strong antagonists of the interferon pathways (10, 25). Furthermore, the polymerase genes, in particular the PB2 gene, have been shown to be important determinants of virulence in the HPAI H5N1 and H7N7 viruses and of transmission in the 1918 H1N1 virus (11, 21, 31). One of the most commonly identified virulence markers to date is E627K in PB2. The glutamic acid (E) residue is found generally in avian influenza viruses, while human viruses have a lysine (K), and this mutation has been described as a determinant of the host range in vitro (28). When avian viruses lacking the E627K substitution were passaged in mice, the viruses acquired the mutation spontaneously upon a single passage (15, 17). In the HPAI H5N1 and H7N7 viruses, E627K was shown to be the prime determinant of pathogenesis in mice (11, 21, 23). Given that all human and many zoonotic influenza viruses of the last century contained 627K (1), it was surprising that the S-OIV had 627E.Additionally, the aspartate (D)-to-asparagine (N) mutation at position 701 of PB2, which was shown to compensate for the absence of E627K, has also not been detected in S-OIV (27). This D701N mutation has previously been shown to expand the host range of avian H5N1 to mice and humans (3, 15) and to increase virus transmission in guinea pigs (27). Thus, S-OIV was the first known human pandemic virus with 627E and 701D, and it has been speculated that S-OIV could mutate into a more virulent form by acquiring one of these mutations, or both.On 8 May 2009, the detection of another mutation in the PB2 gene of S-OIV, an E-to-glycine (G) mutation at position 667, was reported (http://www.promedmail.org/pls/apex/f?p=2400:1000, archive no. 20090508.1722). It has previously been suggested that the E667G substitution in PB2 of HPAI H5N1 virus was under positive selection and possibly played a role in sustainable transmission in humans (14).On 28 September 2009, detection of the E627K mutation in PB2 of S-OIVs of two individuals in the Netherlands was reported (http://www.promedmail.org/pls/apex/f?p=2400:1000, archive no. 20090928.3394) and raised concern about the possible enhanced replication of the S-OIV in humans, possibly associated with increased virulence. To date, the D701N mutation in PB2 has not been reported in any of the S-OIVs sequenced, and additional viruses with mutation E627K have not been recorded, either. In contrast, viruses with E677G have been reported from the United States, Canada, Germany, the United Kingdom, Norway, and France, according to the public sequence databases.Here, the effects of the E627K, D701N, and E677G mutations in the PB2 genes of S-OIVs was investigated using genetically engineered influenza viruses based on a prototype S-OIV, A/Netherlands/602/2009. Polymerase activity was measured in minigenome assays in human 293T cells, virus replication was analyzed in Madin-Darby Canine kidney (MDCK) cells, virulence was tested in mouse and ferret models, and transmission by aerosols or respiratory droplets was tested in ferrets. In contrast to the earlier assumptions based on experience with other influenza A viruses, S-OIVs with E627K, D701N, or E677G in PB2 did not show a marked increase in virulence or transmission compared to the wild-type virus.  相似文献   
4.
Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a catalytically incompetent enzyme that allows substrate binding to both the AS and SBS. In the second enzyme, binding to the SBS was impaired by site-directed mutagenesis, whereas in the third enzyme, the AS was blocked using a covalent inhibitor. Both techniques were able to show that AS and SBS have a similar binding affinity.  相似文献   
5.
6.
The secondary substrate binding site (SBS) of Bacillus subtilis and Aspergillus niger glycoside hydrolase family 11 xylanases was studied by site-directed mutagenesis and evaluation of activity and binding properties of mutant enzymes on different substrates. Modification of the SBS resulted in an up to three-fold decrease in the relative activity of the enzymes on polymeric versus oligomeric substrates and highlighted the importance of several amino acids in the SBS forming hydrogen bonds or hydrophobic stacking interactions with substrates. Weakening of the SBS increased K(d) values by up to 70-fold in binding affinity tests using natural substrates. The impact that modifications in the SBS have both on activity and on binding affinity towards polymeric substrates clearly shows that such structural elements can increase the efficiency of these single domain enzymes on their natural substrates.  相似文献   
7.
Based on epidemiological data, it is believed that human-to-human transmission plays an important role in Nipah virus outbreaks. No experimental data are currently available on the potential routes of human-to-human transmission of Nipah virus. In a first dose-finding experiment in Syrian hamsters, it was shown that Nipah virus was predominantly shed via the respiratory tract within nasal and oropharyngeal secretions. Although Nipah viral RNA was detected in urogenital and rectal swabs, no infectious virus was recovered from these samples, suggesting no viable virus was shed via these routes. In addition, hamsters inoculated with high doses shed significantly higher amounts of viable Nipah virus particles in comparison with hamsters infected with lower inoculum doses. Using the highest inoculum dose, three potential routes of Nipah virus transmission were investigated in the hamster model: transmission via fomites, transmission via direct contact and transmission via aerosols. It was demonstrated that Nipah virus is transmitted efficiently via direct contact and inefficiently via fomites, but not via aerosols. These findings are in line with epidemiological data which suggest that direct contact with nasal and oropharyngeal secretions of Nipah virus infected individuals resulted in greater risk of Nipah virus infection. The data provide new and much-needed insights into the modes and efficiency of Nipah virus transmission and have important public health implications with regards to the risk assessment and management of future Nipah virus outbreaks.  相似文献   
8.
9.
In biomass degradation using simultaneous saccharification and fermentation (SSF), there is a need for efficient biomass degrading enzymes that can work at lower temperatures suitable for yeast fermentation. As xylan is an important lignocellulosic biomass constituent, this study aimed at investigating the possible differences in xylan breakdown potential of endoxylanases using eight different endoxylanases at conditions relevant for SSF. Both solubilising and degrading capacities of the endoxylanases were investigated using water-insoluble and water-soluble oat spelt xylan as model substrates for biomass xylan. Results showed that selecting for combinations of endoxylanases that are efficient at solubilising xylan on the one hand and degrading it to large extent on the other hand, coupled to high specific activities, seems the best option for complete xylan breakdown in lignocellulosic biomass conversion using SSF.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号