首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   818篇
  免费   68篇
  886篇
  2023年   2篇
  2022年   14篇
  2021年   24篇
  2020年   11篇
  2019年   14篇
  2018年   18篇
  2017年   14篇
  2016年   30篇
  2015年   46篇
  2014年   54篇
  2013年   59篇
  2012年   92篇
  2011年   63篇
  2010年   45篇
  2009年   46篇
  2008年   55篇
  2007年   49篇
  2006年   46篇
  2005年   35篇
  2004年   34篇
  2003年   26篇
  2002年   27篇
  2001年   9篇
  2000年   2篇
  1999年   14篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1987年   4篇
  1985年   2篇
  1983年   3篇
  1982年   1篇
  1973年   1篇
  1972年   3篇
排序方式: 共有886条查询结果,搜索用时 0 毫秒
1.
The kinetic and circular dichroic properties of two yeast mutants that are resistant towards specific inhibitors of the mitochondrial cytochrome bc1 complex have been characterized. Both of these mutants have an altered cytochrome b gene in which aromatic residues are exchanged with non-polar residues in a highly conserved region of the protein. The mutant resistant to myxothiazol and mucidin that contains the substitution Phe129----Leu is not greatly affected either in its ubiquinol:cytochrome c reductase or in the spectral properties of cytochrome b. On the other hand, the mutant resistant to stigmatellin that contains the substitution Ile147----Phe shows a large decrease of the catalytic efficiency for ubiquinol and of the maximal turnover of its reductase activity. This stigmatellin mutant also shows an altered circular-dichroic spectrum of the low-potential haem of cytochrome b. This study provides biochemical and biophysical information for identifying a region in mitochondrial cytochrome b that may fulfill a crucial role in the binding of ubiquinol to the bc1 complex. The results are discussed also in terms of the structural model of cytochrome b having a core of four transmembrane helices.  相似文献   
2.
3.
Abstract

The results of two years of collection in a small isle in the southern Sardinia are reported, consisting in a floristic list of 116 entities distributed in 96 genera and 41 families. The biological spectrum of this flora puts in evidence a typical Mediterranean environment, characterized by a marked summer dryness. The ratio: number of entities/surface of the studied site has been compared with that of other small southern Sardinian islands, resulting the highest value. This floristic aspect, as well as differences in the biological spectrum, is interpreted as the result of the presence in the area under study of a desultory link with the mainland, in form of a sandy isthmus. This seems important in breaking the biological balance of the small island.  相似文献   
4.
5.
6.
7.
The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1‐Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1‐Tg mice express high levels of the hMTH1 hydrolase that degrades 8‐oxodGTP and 8‐oxoGTP and excludes 8‐oxoguanine from both DNA and RNA. Compared to wild‐type animals, hMTH1‐overexpressing mice have significantly lower steady‐state levels of 8‐oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age‐dependent accumulation of DNA 8‐oxoguanine that occurs in wild‐type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1‐Tg animals live significantly longer than their wild‐type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1‐Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1‐Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1‐Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.  相似文献   
8.
Most pathological pseudoexon inclusion events originate from single activating mutations, suggesting that many intronic sequences are on the verge of becoming exons. However, the precise mechanisms controlling pseudoexon definition are still largely unexplored. Here, we investigated the cis-acting elements and trans-acting regulatory factors contributing to the regulation of a previously described fibrinogen gamma-chain (FGG) pseudoexon, which is activated by a deep-intronic mutation (IVS6-320A>T). This pseudoexon contains several G-run elements, which may be bound by heterogeneous nuclear ribonucleoproteins (hnRNPs) F and H. To explore the effect of these proteins on FGG pseudoexon inclusion, both silencing and overexpression experiments were performed in eukaryotic cells. While hnRNP H did not significantly affect pseudoexon splicing, hnRNP F promoted pseudoexon inclusion, indicating that these two proteins have only partially redundant functions. To verify the binding of hnRNP F and the possible involvement of other trans-acting splicing modulators, pulldown experiments were performed on the region of the pseudoexon characterized by both a G-run and enrichment for exonic splicing enhancers. This 25-bp-long region strongly binds hnRNP F/H and weakly interacts with Serine/Arginine-rich protein 40, which however was demonstrated to be dispensable for FGG pseudoexon inclusion in overexpression experiments. Deletion analysis, besides confirming the splicing-promoting role of the G-run within this 25-bp region, demonstrated that two additional hnRNP F binding sites might instead function as silencer elements. Taken together, our results indicate a major role of hnRNP F in regulating FGG pseudoexon inclusion, and strengthen the notion that G-runs may function either as splicing enhancers or silencers of the same exon.  相似文献   
9.
Intellectual disability in Down syndrome (DS) appears to be related to severe proliferation impairment during brain development. Recent evidence shows that it is not only cellular proliferation that is heavily compromised in DS, but also cell fate specification and dendritic maturation. The amyloid precursor protein (APP), a gene that is triplicated in DS, plays a key role in normal brain development by influencing neural precursor cell proliferation, cell fate specification, and neuronal maturation. APP influences these processes via two separate domains, the APP intracellular domain (AICD) and the soluble secreted APP. We recently found that the proliferation impairment of neuronal precursors (NPCs) from the Ts65Dn mouse model for DS was caused by derangement of the Shh pathway due to overexpression of patched1(Ptch1), its inhibitory regulator. Ptch1 overexpression was related to increased levels within the APP/AICD system. The overall goal of this study was to determine whether APP contributes to neurogenesis impairment in DS by influencing in addition to proliferation, cell fate specification, and neurite development. We found that normalization of APP expression restored the reduced neuronogenesis, the increased astrogliogenesis, and the reduced neurite length of trisomic NPCs, indicating that APP overexpression underpins all aspects of neurogenesis impairment. Moreover, we found that two different domains of APP impair neuronal differentiation and maturation in trisomic NPCs. The APP/AICD system regulates neuronogenesis and neurite length through the Shh pathway, whereas the APP/secreted AP system promotes astrogliogenesis through an IL-6-associated signaling cascade. These results provide novel insight into the mechanisms underlying brain development alterations in DS.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号