首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2011年   1篇
  2007年   1篇
  1994年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Hanson  A.  Ellingwood  C.  Kerekes  J.  Smith  A. 《Hydrobiologia》1994,279(1):521-524
The Sackville Waterfowl Park, contains a 19 hectare shallow freshwater wetland created by reflooding a saltwater marsh that was drained three centuries ago. Its primary purpose is to provide wetland habitat and wildlife viewing opportunities to tourists and residents. This newly created, eutrophic wetland supports high densities of waterfowl, 2.1 and 3.3 brood ha–1 in 1991 and 1992 respectively. It is hoped that long term monitoring of the Park's waterfowl population and wetland habitat will contribute to a better understanding of factors controlling breeding waterfowl populations.  相似文献   
2.
We use a reaction diffusion equation, together with a genetic algorithm approach for model selection to develop a general modeling framework for biological invasions. The diffusion component of the reaction diffusion model is generalized to include dispersal and advection. The reaction component is generalized to include both linear and non-linear density dependence, and Allee effect. A combination of the reaction diffusion and genetic algorithm is able to evolve the most parsimonious model for invasive species spread. Zebra mussel data obtained from Lake Champlain, which demarcates the states of New York and Vermont, is used to test the appropriateness of the model. We estimate the minimum wave spread rate of Zebra mussels to be 22.5 km/year. In particular, the evolved models predict an average northward advection rate of 60.6 km/year (SD ± 1.9), which compares very well with the rate calculated from the known hydrologic residence time of 60 km/year. A combination of a reaction diffusion model and a genetic algorithm is, therefore, able to adequately describe some of the hydrodynamic features of Lake Champlain and the spread of a typical invasive species—Zebra mussels within the lake.  相似文献   
3.
In order to evaluate the feasibility of a combined evolutionary algorithm-information theoretic approach to select the best model from a set of candidate invasive species models in ecology, and/or to evolve the most parsimonious model from a suite of competing models by comparing their relative performance, it is prudent to use a unified model that covers a myriad of situations. Using Schnute's postulates as a starting point [Schnute, J., 1981. A versatile growth model with statistically stable parameters, Can. J. Fish Aquat. Sci. 38, 1128-1140], we present a single, unified model for growth that can be successfully utilized for model selection in evolutionary computations. Depending on the parameter settings, the unified equation can describe several growth mechanisms. Such a generalized model mechanism, which encompasses a suite of competing models, can be successfully implemented in evolutionary computational algorithms to evolve the most parsimonious model that best fits ground truth data. We have done exactly this by testing the effectiveness of our reaction-diffusion-advection (RDA) model in an evolutionary computation model selection algorithm. The algorithm was validated (with success) against field data sets of the Zebra mussel invasion of Lake Champlain in the United States.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号