首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   21篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2015年   3篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   8篇
  2000年   1篇
  1999年   7篇
  1998年   12篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1992年   13篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1975年   3篇
  1974年   2篇
  1971年   1篇
  1954年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
1.
2.
3.
The effect of quin2 on chemotaxis by polymorphonuclear leukocytes   总被引:3,自引:0,他引:3  
Exposure of rabbit polymorphonuclear leukocytes to micromolar concentrations of quin2-AM results in high intracellular concentrations of quin2, which lead to inhibition of chemotaxis. The loading efficiency of polymorphonuclear leukocytes, being the percentage of quin2-AM which is taken up by the cells and transformed intracellularly into quin2, is very high, reaches a maximum after 30 min, is independent of the presence of extracellular Ca2+ and is fairly independent of cell concentration. As a consequence, inhibition of chemotaxis is strongly dependent on experimental conditions: with a low cell density (3 X 10(6)/ml) exposure to 20 microM quin2-AM results in complete inhibition of chemotaxis, whereas the same concentration of quin2-AM is nearly without effect when an 8-fold higher cell concentration is used. Inhibition by quin2 is dependent on extracellular Ca2+; inhibition is more pronounced in the absence of extracellular Ca2+ than in its presence. It is suggested that quin2 inhibits chemotaxis by interference with intracellular Ca2+.  相似文献   
4.
The coupling of membrane-bound glucose dehydrogenase (EC 1.1.99.17) to the respiratory chain has been studied in whole cells, cell-free extracts, and membrane vesicles of gram-negative bacteria. Several Escherichia coli strains synthesized glucose dehydrogenase apoenzyme which could be activated by the prosthetic group pyrrolo-quinoline quinone. The synthesis of the glucose dehydrogenase apoenzyme was independent of the presence of glucose in the growth medium. Membrane vesicles of E. coli, grown on glucose or succinate, oxidized glucose to gluconate in the presence of pyrrolo-quinoline quinone. This oxidation led to the generation of a proton motive force which supplied the driving force for uptake of lactose, alanine, and glutamate. Reconstitution of glucose dehydrogenase with limiting amounts of pyrrolo-quinoline quinone allowed manipulation of the rate of electron transfer in membrane vesicles and whole cells. At saturating levels of pyrrolo-quinoline quinone, glucose was the most effective electron donor in E. coli, and glucose oxidation supported secondary transport at even higher rates than oxidation of reduced phenazine methosulfate. Apoenzyme of pyrrolo-quinoline quinone-dependent glucose dehydrogenases with similar properties as the E. coli enzyme were found in Acinetobacter calcoaceticus (var. lwoffi) grown aerobically on acetate and in Pseudomonas aeruginosa grown anaerobically on glucose and nitrate.  相似文献   
5.
Microcrystals of hydroxyapatite cause severe membrane damage in human erythrocytes, as is evident from the strong hemolysis that is caused by these crystals. Hemolysis by hydroxyapatite crystals is time and concentration dependent, and is preceded by aggregation of erythrocytes. Polyvinylpyridine-N-oxide, a strong hydrogen acceptor, has no inhibiting effect on hydroxyapatite-induced hemolysis. This suggest that the mechanism of action of these crystals is different from that of urate crystals and silica particles, where hydrogen bonding interaction is supposed to be important. Negatively charged macromolecules, such as dextran sulfate, heparin, and polyglutamic acid, inhibit hydroxyapatite crystal-induced hemolysis, suggesting that positive charges, probably located on the crystals, play an important role in the membrane-damaging effect of these crystals. The structures with which these positive charges interact remain to be determined because removal of negative charges from the erythrocytes by treatment with neuraminidase does not affect crystal-induced hemolysis.  相似文献   
6.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   
7.
8.
Abstract The comparative chromosomal locations of polymeric β-fructosidase SUC genes have been determined by Southern blot hybridization with the SUC2 probe in 91 different strains of Saccharomyces cerevisiae . Most of the strains exhibited a single SUC2 gene, but in some strains two or three SUC genes were found. All Suc strains carried a silent suc20 sequence. The accumulation of SUC genes was observed in populations derived from sources containing sucrose and seems to be absent in strains from sources promoting the MEL gene.  相似文献   
9.
Sulfate reduction in methanogenic bioreactors   总被引:9,自引:0,他引:9  
Abstract: In the anaerobic treatment of sulfate-containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate.  相似文献   
10.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号