首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2022年   1篇
  2014年   1篇
  2009年   2篇
  2007年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
排序方式: 共有14条查询结果,搜索用时 62 毫秒
1.
Integrated study of the genetic structure of the Udmurt population with respect to different genetic systems has been performed. Data on the genes of genetic diseases, abiotic parameters analyzed by population statistic methods, and DNA polymorphism are summarized. The populations of six raions (districts) of Udmurt Republic (the Mozhga, Malaya Purga, Sharkan, Debesy, Igra, and Glazov raions) have been studied. The total population studied was 267 655 people (an urban population of 150 119 people and a rural population of 117 536 people), including 155 346 Udmurts. The population structure has been studied in six districts on the basis of the vital statistics, Crow’s indices, Malecot’s isolation by distance parameters, ethnically assortative marriage parameters, endogamy indices, inbreeding-endogamy (ie) indices, and frequencies of the genotype and allele frequencies of four DNA markers (17 alleles). The prevalences of hereditary diseases have been calculated for different population groups: urban and rural populations, Udmurts and other ethnic groups. These groups, especially the urban and rural populations, substantially differed from one another in the prevalences of autosomal dominant (AD) and autosomal recessive (AR) diseases. The correlation between the prevalence of AD and AR diseases and the ie index is positive and significant. The spectrum of hereditary diseases detected in six districts of Udmurtia comprises 149 diseases (80, 57, and 12 AD, AR, and X-linked diseases, respectively). Accumulation of individual diseases in districts of Udmurtia and accumulation of diseases in Udmurtia as compared to regions studied earlier has been found. Cluster analysis of the frequencies of genes of AD and AR diseases and DNA markers has determined the gene geographic position of Udmurts.  相似文献   
2.
An integrated medical genetic an population genetic study has been performed in two raions (administrative districts) of the Tver oblast (region) of Russia: the Udomlya raion located in the zone affected by the Kalininskaya Nuclear Power Plant and the Ostashkov raion, which served as a control district. No significant differences has been found with respect to the genetic parameters studied. The values of these parameters in the populations of the town of Udomlya, the town of Ostashkov, the Udomlya raion, and the Ostashkov raion, respectively, are the following: random inbreeding, 0.00006, 0.00011, 0.000167, and 0.000366; endogamy index, 0.05, 0.43, 0.30, and 0.42; local inbreeding, 0.0003, 0.00045, 0.0009, and 0.0011; the degree of isolation by distance, 0.0003, 0.00045, 0.0009, and 0.0005; , 2098, 1338, 1473, and 1189; the load of autosomal dominant (AD) diseases, 0.71, 0.92, 0.92, and 1.37; the load of autosomal recessive (AR) diseases, 0.68, 0.69, 0! .67, and 0.82; and the load of X-linked diseases, 0.18, 0.64, 0.83, and 0.27.  相似文献   
3.
The diversity of autosomal recessive (AR) diseases was studied in six Russian regions: the Kirov, Kostroma, and Bryansk oblasts; Adygea Republic; Krasnodar krai, and Marii El Republic (in the latter region, the Mari and Russian ethnic groups were studied separately). In total, more than 1.5 million people were studied. The spectrum of the AR diseases included 101 nosological forms; the total number of the affected was 942. For all diseases, the prevalence rate in the region where they were found and the mean prevalence rate in the total population studied were calculated. Only seven AR diseases had prevalence rates of 1 : 50000 or higher; however, this group contained about 50% of the patients. About half of the AR diseases (66) had an extremely low prevalence rate (1 : 877483). Eleven diseases exhibit local accumulation. Accumulation of some or other diseases was only observed in four out of seven populations studied (Marii El, Adygea, and the Kirov and Bryansk oblasts). To determine the cause of the local accumulation of some diseases in populations, correlation analysis of the dependence of accumulation of hereditary diseases on the genetic structure of the populations studied was performed. The accumulation coefficients for AR and autosomal dominant (AD) diseases and the mean values of random inbreeding (F st) in individual districts were calculated for all populations studied. The coefficients of the Spearman rank correlation between the accumulation coefficient and random inbreeding (F st) were 0.68 and 0.86 for the AD and AR diseases, respectively. The correlation between the accumulation of AD and AR diseases was 0.86. The relationships found indicate that the diversity of AD and AR diseases, as well as the genetic load, distinctly depended on the population genetic structure and were largely determined by genetic drift.  相似文献   
4.
Comprehensive population genetic and medical genetic studies were performed in three raions (districts) of Chuvashia. The population of these districts is more than 90% Chuvash. About 70% of the families that completed reproduction had two or three children. The proportion of families with four or more children was 18%. The duration of generation was 27.6 years. The differential fertility and differential mortality indices in the Chuvash population were estimated at 0.33 and 0.076, respectively. The total index of differential selection was 0.403, which is typical of modern urbanized populations. Mean values of local inbreeding calculated from Malecot's model of isolation by distance were 0.00124 and 0.00377 for the urban and rural populations, respectively, of the districts studied. The prevalence rates of autosomal dominant (AD), autosomal recessive (AR), and X-linked diseases were found to be 0.47, 0.52, and 0.35 per 1000, respectively, in the urban population and 1.62, 1.14, and 0.31 per 1000, respectively, in the rural population. Significant correlation between the local inbreeding and prevalence rates of AD and AR diseases was found. A total of 43 AD and 43 AR diseases were identified. Some of them were not found in previous studies on other populations.  相似文献   
5.
The diversity of Mendelian hereditary pathology has been studied in Sakha Republic (Yakutia). The sample comprised 1 000 700 subjects, including 363 316 Yakuts, 14 428 Evenks, 8668 Evens, 550 263 Russians, and 64 025 subjects from other ethnic groups. Fifty-one autosomal dominant (AD) diseases, including five diseases with frequencies of 1 : 50 000 or higher; 40 autosomal recessive (AR) diseases, including eight diseases with frequencies of 1 : 50 000 or higher in the Yakut population; and five X-linked diseases have been detected.  相似文献   
6.
Summarized genetic epidemiological characteristics of nonsyndromic sensorineural deafness in six raions of Chuvash Republic (Cheboksary, Kanash, Morgaushi, Tsivil'sk, Mariinski Posad, and Alatyr') are presented. A total of 264419 individuals were examined. Forty-five families (60 affected individuals) with autosomal recessive (AR) and 8 families (18 affected individuals) with autosomal dominant (AD) nonsyndromic sensorineural deafness (NSSD) were identified. The load of AD and AR NSSD in the raions examined was estimated. A correlation between the distribution of AR NSSD and genetic drift was demonstrated. Furthermore, the load of AR NSSD was substantially higher in the regions with higher differentiation level. The Spearman's correlation coefficient value was 0.87. Typing of the 35delG mutation in the gene for connexion 26 was carried out in 34 patients from 26 families with AR NSSD. Comparative estimates of the NSSD prevalence in a number of Russian populations were performed.  相似文献   
7.
Summarized data of medical genetic survey of the population of Republic of Sakha (Yakutia) are presented. The number of the population examined constituted 1 000 700 individuals (including 424 500 of urban and 576 200 of rural population, respectively). Regarding the ethnicity, 33 regions of the Republic examined were at most inhabited by Yakuts (36%) and Russians (55%). A total of 400 families (606 patients) with autosomal dominant, 274 families (369 patients) with autosomal recessive, and 42 families (53 patients) with X-linked pathologies were detected. The segregation analysis performed showed good correlation with the expected type of inheritance for both dominant and recessive diseases. The prevalence rate of monogenic hereditary diseases for rural and urban populations, as well as for solely Yakuts, was calculated. It was shown that weighted average prevalence of dominant (0.68; 1.44) and recessive (0.43; 0.86) disorders in Yakuts was two times higher than in total population examined.  相似文献   
8.
Genetic and demographic information for the Yakut population living in the Republic of Sakha (Yakutia) is presented. The mean number of children per woman constituted 4.605. Crow's index (I tot) and its components (I m and I f) were 0.483, 0.104, and 0.343, respectively.  相似文献   
9.
A genetic epidemiological study has been carried out in eight raions (districts) of Rostov oblast (region) of Russia: Tsimlyansk, Volgodonskoi, Tselina, Egorlykskaya, Millerovo, Tarasovskaya, Rodionovo-Nesvetaiskaya, and Matveevo-Kurgan raions. The population structure (the parameters of the isolation by distance model, ethnic assortative marriage, random inbreeding (F ST), endogamy index, and ie) and the genetic demographic characteristics of the regional population (vital statistics, Crow’s index, and its components) have been analyzed. The total sample size was 320 925 subjects (including 114 106 and 206 816 urban and rural residents, respectively). The load of the main types of Mendelian diseases (autosomal dominant (AD), autosomal recessive (AR), and X-linked diseases) has been calculated for the total sample from eight districts and separately for the urban and rural populations. Substantial differences between individual districts in the AD and AR genetic loads have been found, especially upon separation into urban and rural samples. The results of correlation analysis suggest that migration and genetic drift are the main factors of genetic differentiation of populations with respect to the prevalence of hereditary diseases.  相似文献   
10.
Analysis of the diversity of monogenic hereditary diseases in eight raions (districts) of Rostov oblast (region) of Russia (Tsimlyansk, Volgodonskoi, Tselina, Egorlykskaya, Millerovo, Tarasovskaya, Rodionovo-Nesvetaiskaya, and Matveevo-Kurgan raions) has been summarized. The total sample size was 320925 subjects. The spectrum of hereditary diseases detected in the eight districts comprises 187 diseases, including 99 autosomal dominant (AD), 72 autosomal recessive (AR), and 16 X-linked diseases. The mean prevalence rate of each disease in the total population has been calculated. Accumulation of individual diseases in different regions of Rostov oblast has been calculated; the disease accumulation has been compared with that in some populations of Russia examined earlier. Cluster analysis using the data on the frequencies of genes of hereditary diseases has shown the gene geographic position of the Rostov oblast population among the following ethnic populations of Russia: Russians (Kostroma, Kirov, and Rostov oblasts and Krasnodar krai), Chuvashes (Chuvashia), Adygeans (Adygea), Maris (Marii El), and Udmurts (Udmurtia).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号