首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   38篇
  2018年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   2篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   6篇
  1988年   2篇
  1987年   6篇
  1986年   9篇
  1985年   9篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   6篇
  1978年   7篇
  1977年   4篇
  1976年   4篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
  1966年   4篇
  1912年   1篇
  1911年   2篇
排序方式: 共有183条查询结果,搜索用时 31 毫秒
1.
The particulate enzyme fraction from pig aorta was treated with Triton X-100 or Nonidet P-40 to yield a soluble enzyme preparation. This solubilized enzyme catalyzed the transfer of mannose from GDP-[14C]mannose, but not from [14C]mannosyl-phosphoryl-polyprenol, to G1cNAc-G1cNAc-pyrophosphoryl-polyprenol to form the trisaccharide-lipid, Man-β-GlcNAc-GlcNAc-pyrophosphoryl-polyprenol. The trisaccharide-lipid formed in these reactions was isolated by solvent fractionation and was subjected to mild acid hydrolysis to release the [14C]trisaccharide. Essentially all of the radioactivity was released from this trisaccharide as mannose upon treatment with β-mannosidase while α-mannosidase had no effect.  相似文献   
2.
A procedure for the preparation of tritiated castanospermine is described. The tritiated alkaloid was shown to be chromatographically identical to the native material and exhibited the same inhibitory properties. Radiolabeled castanospermine tightly bound to purified intestinal sucrase. Following gel chromatography, each mole of enzyme was shown to have bound 1 mol of the radioactive alkaloid. Cultured MDCK cells were also shown to take up the labeled castanospermine. This compound should be a useful tool in the investigation of enzymes that are responsible for the processing of glycoprotein oligosaccharides.  相似文献   
3.
Using isopycnic sucrose gradients, we have ascertained the subcellular location of several enzymes involved in the processing of the N-linked oligosaccharides of glycoproteins in developing cotyledons of the common bean, Phaseolus vulgaris. All are localized in the endoplasmic reticulum (ER) or Golgi complex as determined by co-sedimentation with the ER marker, NADH-cytochrome c reductase, or the Golgi marker, glucan synthase I. Glucosidase activity, which removes glucose residues from Glc3Man9(GlcNAc)2, was found exclusively in the ER. All other processing enzymes, which act subsequent to the glucose trimming steps, are associated with the Golgi. These include mannosidase I (removes 1-2 mannose residues from Man6-9[GlcNAc]2), mannosidase II (removes mannose residues from GlcNAcMan5[GlcNAc]2), and fucosyltransferase (transfers a fucose residue to the Asn-linked GlcNAc of appropriate glycans). We have previously reported the localization of two other glycan modifying enzymes (GlcNAc-transferase and xylosyltransferase activities) in the Golgi complex. Attempts at subfractionation of the Golgi fraction on shallow sucrose gradients yielded similar patterns of distribution for all the Golgi processing enzymes. Subfractionation on Percoll gradients resulted in two peaks of the Golgi marker enzyme inosine diphosphatase, whereas the glycan processing enzymes were all enriched in the peak of lower density. These results do not lend support to the hypothesis that N-linked oligosaccharide processing enzymes are associated with Golgi cisternae of different densities.  相似文献   
4.
G P Kaushal  A D Elbein 《Biochemistry》1987,26(24):7953-7960
The beta-mannosyltransferase that catalyzes the synthesis of Man-beta-GlcNAc-GlcNAc-PP-dolichol from GDP-mannose and dolichyl-PP-GlcNAc-GlcNAc was solubilized from microsomes of suspension-cultured soybean cells by treatment with 1.5% Triton X-100 and was purified about 700-fold by chromatography on DEAE-cellulose, hydroxylapatite, and a GDP affinity column. The purified enzyme was reasonably stable in the presence of 20% glycerol and 0.5 mM dithiothreitol. The enzyme required either detergent (Triton X-100 or NP-40) or phospholipid for maximum activity, but the effects of these two were not additive. Thus, either phosphatidylcholine or Triton X-100 could give maximum stimulation. In terms of phospholipid stimulation, both the head group and the acyl chain appeared to be important since phosphatidylcholines with 18-carbon unsaturated fatty acids were most effective. The purified enzyme had a sharp pH optimum of 6.9-7.0 and required a divalent cation. Mg2+ was the best metal ion with optimum activity occurring at 6 mM, but Mn2+ was reasonably effective while Ca2+ was slightly stimulatory. The Km for GDP-mannose was calculated to be 1.7 X 10(-6) M and that for dolichyl-PP-GlcNAc-GlcNAc about 9 X 10(-6) M. The enzyme was inhibited by a number of guanosine nucleotides such as GDP-glucose, GDP, GMP, and GTP, but various uridine and adenosine nucleotides were without effect. The purified enzyme was apparently free of alpha-1,3-mannosyltransferase (and perhaps other mannosyltransferases) and dolichyl-P-mannose synthase since the only product seen from dolichyl-PP-GlcNAc-GlcNAc and GDP-mannose was Man-beta-GlcNAc-GlcNAc-PP-dolichol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
Insulin binds to a receptor on the cell surface, thereby triggering a biological response within the target cell. Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. We have studied a family in which two sisters have a genetic form of insulin-resistant diabetes mellitus. The technique of homozygosity mapping has been used to demonstrate that the mutation causing diabetes in this consanguineous family is genetically linked to the insulin receptor gene. The two insulin-resistant sisters are homozygous for a mutation encoding substitution of valine for phenylalanine at position 382 in the alpha-subunit of the insulin receptor. Transfection of mutant insulin receptor cDNA into NIH3T3 cells demonstrated that the Val382 mutation impaired post-translational processing and retarded transport of the insulin receptor to the plasma membrane. Thus, the mutation causes insulin resistance by decreasing the number of insulin receptors on the surface of the patients' cells.  相似文献   
6.
Australine [(1R,2R,3R,7S,7aR)-3-(hydroxymethyl)-1,2,7-trihydroxypyrrolizid ine] is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis [Molyneux et al. (1988) J. Nat. Prod. (in press)]. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, we tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the alpha-glucosidase amyloglucosidase (50% inhibition at 5.8 microM), but it did not inhibit beta-glucosidase, alpha- or beta-mannosidase, or alpha- or beta-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc3Man7-9(GlcNAc)2-oligosaccharides.  相似文献   
7.
Two arylmannosidases (signified as A and B) were purified tohomogeneity from soluble and microsomal fractions of mung beanseedlings. Arylmannosidase A from the microsomes appeared thesame on native gels and on SDS gels as soluble arylmannosidaseA, the same was true for arylmannosidase B. Sedimentation velocitystudies indicated that both enzymes were homogeneous, and thatarylmannosidase A had a molecular mass of 237 kd while B hada molecular mass of 243 kd. Arylmannosidase A showed two majorprotein bands on SDS gels with molecular masses of 60 and 55kd, and minor bands of 79, 39 and 35 kd. All of these bandswere N-linked since they were susceptible to digestion by endo-glucosaminidaseH. In addition, at least the major bands could be detected byWestern blots with antibody raised against the xylose moietyof N-linked plant oligosaccharides, and they could also be labeledin soybean suspension cells with [2–3H]mannose. ArylmannosidaseB showed three major bands with molecular masses of 72, 55 and45 kd, and minor bands of 42 and 39 kd. With the possible exceptionof the 45 and 42 kd bands, all of these bands are glycoproteins.Arylmannosidases A and B showed somewhat different kineticsin terms of mannose release from high-mannose oligosaccharides,but they were equally susceptible to inhibition by swainsonineand mannostatin A. Polyclonal antibody raised against the arylmannosidaseB cross-reacted equally well with arylmannosidase A from mungbean seedlings and with arylmannosidase from soybean cells.However, monoclonal antibody against mung bean arylmannosidaseA was much less effective against arylmannosidase B. Antibodywas used to examine the biosynthesis and structure of the carbohydratechains of arylmannosidase in soybean cells grown in [2–3H]mannose.Treatment of the purified enzyme with Endo H released 50% ofthe radioactivity, and these labeled oligosaccharides were ofthe high-mannose type, i.e. mostly Man9GlcNAc. The precipitatedprotein isolated from the Endo H treatment still contained 50%of the radioactivity, and this was present in modified structuresthat probably contain xylose residues. Mung beans mannosidases glycoproteins -soybean--mannosidases xylose-containing N-linked glycoproteins  相似文献   
8.
In this study, we compared the effects of 2,6-dideoxy-2,6-imino-7-O-(beta-D-glucopyranosyl)-D-glycero-L-gulohep titol (MDL) to those of the glucosidase I inhibitor, castanospermine, on the purified processing enzymes glucosidases I and II. WE also compared the effects of these two inhibitors on glycoprotein processing in cell culture using influenza virus-infected Madin-Darby canine kidney cells as a model system. With the purified processing enzymes, castanospermine was a better inhibitor of glucosidase I than of glucosidase II, whereas MDL is more effective against glucosidase II than glucosidase I. In cell culture at the appropriate dose, MDL also preferentially affected glucosidase II. Thus, at 250 micrograms/ml MDL, the major [3H]glucose-labeled (or [3H]mannose-labeled) glycopeptide from the viral hemagglutinin was susceptible to endoglucosaminidase H, and the oligosaccharide liberated by this treatment was characterized as a Glc2Man7-9GlcNAc on the basis of size, resistance to digestion by glucosidase I (but sensitivity to glucosidase II), methylation analysis, and Smith degradation studies. These data indicate that at appropriate concentrations of MDL (250 micrograms/ml), one can selectively inhibit glucosidase II in Madin-Darby canine kidney cells. However, at higher concentrations of inhibitor (500 micrograms/ml), both enzymes are apparently affected. Since MDL did not greatly inhibit the synthesis of lipid-linked saccharides or the synthesis of protein or RNA, it should be a useful tool for studies on the biosynthesis and role of N-linked oligosaccharides in glycoprotein function.  相似文献   
9.
The GlcNAc-1-P-transferase was solubilized from microsomal preparations of soybean cultured cells by treatment with 1% Triton X-100. The solubilized enzyme catalyzed the formation of dolichyl pyrophosphoryl-GlcNAc when incubated with UDP-GlcNAc and dolichyl phosphate. The GlcNAc-1-P-transferase activity was stimulated by the addition of phosphatidylglycerol and phosphatidylinositol, but was inhibited by phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The Km value for dolichyl-phosphate was 6.2 micromolar and that determined for UDP-GlcNAc was 0.42 micromolar. The pH optimum for the GlcNAc-1-P reaction was between 7.2 and 7.6; maximum activity occurred at about 10 millimolar Mg2+. The addition of unlabeled GDP-mannose or UDP-glucose considerably inhibited enzyme activity which could be restored to nearly the original value by addition of more dolichyl phosphate to the incubation mixture. On the other hand, the addition of unlabeled ADP-glucose and GDP-glucose enhanced the enzyme activity. This stimulation by these sugar nucleotides was found to be due to the protection of the substrate UDP-[3H]-GlcNAc from pyrophosphatase degradation. The GlcNAc-1-P-transferase reaction was very sensitive to tunicamycin and 50% inhibition required less than 1 microgram of antibiotic per milliliter. Amphomycin, showdomycin, and diumycin also inhibited this reaction but at higher concentrations.  相似文献   
10.
Cultures of soybean cells incorporate [5,6-3H]-l-fucose into various cellular components including lipids and proteins. The membrane glyco-proteins were digested with pronase to produce glycopeptides, and the glycopeptides were isolated on columns of Biogel P-4. The major fucoselabeled glycopeptide sized as a Hexose15-17-N-acetylglucosamine2 (GlcNAc2) on columns of Biogel P-4. Fucose incorporation was also examined in the presence of the processing inhibitor swainsonine, and the glycosylation inhibitor tunicamycin. In the presence of swainsonine, the incorporation of fucose was not reduced but the glycopeptides were smaller in size and migrated like Hexose12-13-GlcNAc2 structures. On the other hand, tunicamycin inhibited the incorporation of fucose into the glycopeptides by 70 to 80%, indicating that the l-fucose was present in N-linked oligosaccharides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号