首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   21篇
  2023年   4篇
  2021年   9篇
  2020年   9篇
  2019年   4篇
  2018年   8篇
  2017年   4篇
  2016年   6篇
  2015年   10篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   9篇
  2010年   10篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
1.
The invasively growing and metasizing Lewis lung carcinoma consistently contained urokinase-type plasminogen activator (u-PA) enzyme activity. When investigated immunocytochemically with antibodies against u-PA, different parts of individual tumors showed a pronounced heterogeneity in staining intensity. Strong staining was found in areas with invasive growth and degradation of surrounding normal tissue, while other areas were completely devoid of staining. Immunoreactivity occurred both with a perinuclear cytoplasmic localization in tumor cells and associated with apparently extracellular material. SDS PAGE of tumor extracts, under both reducing and nonreducing conditions, followed by immunoblotting, showed only one immunocytochemically stainable band with an electrophoretic mobility corresponding to that of purified proenzyme to u-PA, while no two-chain u-PA was detected. This indicates that the major part of the activator in Lewis lung carcinoma is present as one-chain pro-u-PA.  相似文献   
2.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   
3.
Plant diversity has a strong impact on a plethora of ecosystem functions and services, especially ecosystem carbon (C) storage. However, the potential context-dependency of biodiversity effects across ecosystem types, environmental conditions and carbon pools remains largely unknown. In this study, we performed a meta-analysis by collecting data from 95 biodiversity-ecosystem functioning (BEF) studies across 60 sites to explore the effects of plant diversity on different C pools, including aboveground and belowground plant biomass, soil microbial biomass C and soil C content across different ecosystem types. The results showed that ecosystem C storage was significantly enhanced by plant diversity, with stronger effects on aboveground biomass than on soil C content. Moreover, the response magnitudes of ecosystem C storage increased with the level of species richness and experimental duration across all ecosystems. The effects of plant diversity were more pronounced in grasslands than in forests. Furthermore, the effects of plant diversity on belowground plant biomass increased with aridity index in grasslands and forests, suggesting that climate change might modulate biodiversity effects, which are stronger under wetter conditions but weaker under more arid conditions. Taken together, these results provide novel insights into the important role of plant diversity in ecosystem C storage across critical C pools, ecosystem types and environmental contexts.  相似文献   
4.

Deforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community.

  相似文献   
5.
Although nitrogen (N) deposition is increasing globally, N availability still limits many organisms, such as microorganisms and mesofauna. However, little is known to which extent soil organisms rely on mineral‐derived N and whether plant community composition modifies its incorporation into soil food webs. More diverse plant communities more effectively compete with microorganisms for mineral N likely reducing the incorporation of mineral‐derived N into soil food webs. We set up a field experiment in experimental grasslands with different levels of plant species and functional group richness. We labeled soil with 15NH4 15NO3 and analyzed the incorporation of mineral‐derived 15N into soil microorganisms and mesofauna over 3 months. Mineral‐derived N incorporation decreased over time in all investigated organisms. Plant species richness and presence of legumes reduced the uptake of mineral‐derived N into microorganisms. In parallel, the incorporation of mineral‐derived 15N into mesofauna species declined with time and decreased with increasing plant species richness in the secondary decomposer springtail Ceratophysella sp. Effects of both plant species richness and functional group richness on other mesofauna species varied with time. The presence of grasses increased the 15N incorporation into Ceratophysella sp., but decreased it in the primary decomposer oribatid mite Tectocepheus velatus sarekensis. The results highlight that mineral N is quickly channeled into soil animal food webs via microorganisms irrespective of plant diversity. The amount of mineral‐derived N incorporated into soil animals, and the plant community properties affecting this incorporation, differed markedly between soil animal taxa, reflecting species‐specific use of food resources. Our results highlight that plant diversity and community composition alter the competition for N in soil and change the transfer of N across trophic levels in soil food webs, potentially leading to changes in soil animal population dynamics and community composition. Sustaining high plant diversity may buffer detrimental effects of elevated N deposition on soil biota.  相似文献   
6.
Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non‐additive way. We studied early‐stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community‐specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community‐specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community‐specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community‐specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes.  相似文献   
7.
Eric Allan  Wolfgang W. Weisser  Markus Fischer  Ernst-Detlef Schulze  Alexandra Weigelt  Christiane Roscher  Jussi Baade  Romain L. Barnard  Holger Beßler  Nina Buchmann  Anne Ebeling  Nico Eisenhauer  Christof Engels  Alexander J. F. Fergus  Gerd Gleixner  Marlén Gubsch  Stefan Halle  Alexandra M. Klein  Ilona Kertscher  Annely Kuu  Markus Lange  Xavier Le Roux  Sebastian T. Meyer  Varvara D. Migunova  Alexandru Milcu  Pascal A. Niklaus  Yvonne Oelmann  Esther Pašalić  Jana S. Petermann  Franck Poly  Tanja Rottstock  Alexander C. W. Sabais  Christoph Scherber  Michael Scherer-Lorenzen  Stefan Scheu  Sibylle Steinbeiss  Guido Schwichtenberg  Vicky Temperton  Teja Tscharntke  Winfried Voigt  Wolfgang Wilcke  Christian Wirth  Bernhard Schmid 《Oecologia》2013,173(1):223-237
In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination.  相似文献   
8.
Higher plant diversity is often associated with higher soil microbial biomass and diversity, which is assumed to be partly due to elevated root exudate diversity. However, there is little experimental evidence that diversity of root exudates shapes soil microbial communities. We tested whether higher root exudate diversity enhances soil microbial biomass and diversity in a plant diversity gradient, thereby negating significant plant diversity effects on soil microbial properties. We set up plant monocultures and two‐ and three‐species mixtures in microcosms using functionally dissimilar plants and soil of a grassland biodiversity experiment in Germany. Artificial exudate cocktails were added by combining the most common sugars, organic acids, and amino acids found in root exudates. We applied four different exudate cocktails: two exudate diversity levels (low‐ and high‐diversity) and two nutrient‐enriched levels (carbon‐ and nitrogen‐enriched), and a control with water only. Soil microorganisms were more carbon‐ than nitrogen‐limited. Cultivation‐independent fingerprinting analysis revealed significantly different soil microbial communities among exudate diversity treatments. Most notably and according to our hypothesis, adding diverse exudate cocktails negated the significant plant diversity effect on soil microbial properties. Our findings provide the first experimental evidence that root exudate diversity is a crucial link between plant diversity and soil microorganisms.  相似文献   
9.
Stable provisioning of ecosystem functions and services is crucial for human well‐being in a changing world. Two essential ecological components driving vital ecosystem functions in terrestrial ecosystems are plant diversity and soil microorganisms. In this study, we tracked soil microbial basal respiration and biomass over a time period of 12 years in a grassland biodiversity experiment (the Jena Experiment) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability of soil microbial properties (basal respiration and biomass) in bulk‐soil. Spatial and temporal stability were calculated as the inverse coefficient of variation (CV?1) of soil microbial respiration and biomass measured from soil samples taken over space and time, respectively. We found that 1) plant species richness consistently increased soil microbial properties after a time lag of four years since the establishment of the experimental plots, 2) plant species richness had minor effects on the spatial stability of soil microbial properties, whereas 3) the functional composition of plant communities significantly affected spatial stability of soil microbial properties, with legumes and tall herbs reducing both the spatial stability of microbial respiration and biomass, while grasses increased the latter, and 4) the effect of plant diversity on temporal stability of soil microbial properties turned from being negative to neutral, suggesting that the recovery of soil microbial communities from former arable land‐use takes more than a decade. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially‐driven ecosystem processes, such as decomposition and element cycling, in temperate semi‐natural grassland.  相似文献   
10.
Intensive land use of the Brazilian Atlantic Forest accelerated with the rise of sugar cane plantations in the northeastern part of Brazil. Consequently, many ecosystems were destroyed, including riparian forests. The number of studies of riparian restoration has increased but comparative studies on the belowground effects of common reforestation strategies are rare. Here, we compared soil microbial properties among four different land use types: native rainforest, sugar cane plantation, single species reforestation, and mixed species reforestation, each replicated at two spatially independent sites. Soil samples were taken in 2013 and 2014, that is 2 and 3 years after reforestation, respectively. In both years, land use types had a significant effect on basal respiration, microbial biomass, and specific respiration (whereas specific respiration was marginally affected in 2014). In 2013, basal respiration in sugar cane plantations was significantly lower (?65%) when compared to native forests. In 2014, basal respiration (+60%) and soil microbial biomass (+90%) were significantly higher in mixed species reforestation compared to sugar cane, whereas single species reforestation had comparable values as in sugar cane plantations. Our results indicate that soil microbial biomass and activity respond rapidly to land use change when mixed species reforestation is used. Thus, using mixed species reforestation may enhance the provisioning of ecosystem services already in the short term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号