首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   7篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
排序方式: 共有85条查询结果,搜索用时 468 毫秒
1.

Background  

Identifying essential genes in bacteria supports to identify potential drug targets and an understanding of minimal requirements for a synthetic cell. However, experimentally assaying the essentiality of their coding genes is resource intensive and not feasible for all bacterial organisms, in particular if they are infective.  相似文献   
2.
BACKGROUND: The discriminatory power and imaging efficiency of different multicolor FISH (M-FISH) analysis systems are key factors in obtaining accurate and reproducible classification results. In a recent paper, Garini et al. put forth an analytical technique to quantify the discriminatory power ("S/N ratio") and imaging efficiency ('excitation efficiency') of multicolor fluorescent karyotyping systems. METHODS: A parametric model of multicolor fluorescence microscopy, based on the Beer-Lambert law, is analyzed and reduced to a simple expression for S/N ratio. Parameters for individual system configurations are then plugged into the model for comparison purposes. RESULTS: We found that several invalid assumptions, which are used to reduce the complex mathematics of the Beer-Lambert law to a simple S/N ratio, result in some completely misleading conclusions about classification accuracy. The authors omit the most significant noise source, and consider only one highly abstract and unrepresentative situation. Unwisely chosen parameters used in the examples lead to predictions that are not consistent with actual results. CONCLUSIONS: The earlier paper presents an inaccurate view of the M-FISH situation. In this short communication, we point out several inaccurate assumptions in the mathematical development of Garini et al. and the poor choices of parameters in their examples. We show results obtained with different imaging systems that indicate that reliable and comparable results are obtained if the metaphase samples are well-hybridized. We also conclude that so-called biochemical noise, not photon noise, is the primary factor that limits pixel classification accuracy, given reasonable exposure times. Copyright Wiley-Liss, Inc.  相似文献   
3.
4.
The surface area of chromosome territories has been suggested as a preferred site for genes, specific RNAs, and accumulations of splicing factors. Here, we investigated the localization of sites of replication within individual chromosome territories.In vivoreplication labeling with thymidine analogues IdUrd and CldUrd was combined with chromosome painting by fluorescentin situhybridization on three-dimensionally preserved human fibroblast nuclei. Spatial distributions of replication labels over the chromosome territory, as well as the territory volume and shape, were determined by 3D image analysis. During late S-phase a previously observed shape difference between the active and inactive X-chromosome in female cells was maintained, while the volumes of the two territories did not differ significantly. Domains containing early or mid to late replicating chromatin were distributed throughout territories of chromome 8 and the active X. In the inactive X-chromosome early replicating chromatin was observed preferentially near the territory surface. Most important, we established that the process of replication takes place in foci throughout the entire chromosome territory volume, in early as well as in late S-phase. This demonstrates that activity of macromolecular enzyme complexes takes place throughout chromosome territories and is not confined to the territory surface as suggested previously.  相似文献   
5.
Multicolor fluorescencein situhybridization with a whole chromosome composite probe for the X-chromosome and microdissection probes for the Xp and Xq arms, as well as for the Xp terminal, Xq terminal, and X centromer specific subregional probes, was applied to three-dimensional (3D) preserved human female amniotic fluid cell nuclei. Confocal laser scanning microscopy and three-dimensional image analysis demonstrated distinctly separated Xp arm and Xq arm domains. 3D distance measurements revealed a high variability of intrachromosomal distances between Xpter, Xcen, and Xqter specific probes within both X territories. A 3D distance measurement error of ±70 nm was found in control experiments using quartz glass microspheres labeled with different fluorochromes. Our data argue against the hypothesis of Walkeret al.(1991,Proc. Natl. Acad. Sci. USA88, 6191–6195) that a looped structure of the inactive X territory is formed by tight telomere–telomere associations.  相似文献   
6.

Background  

GFP-fusion proteins and immunostaining are methods broadly applied to investigate the three-dimensional organization of cells and cell nuclei, the latter often studied in addition by fluorescence in situ hybridization (FISH). Direct comparisons of these detection methods are scarce, however.  相似文献   
7.
The number of fluorophores within a molecule complex can be revealed by single-molecule photobleaching imaging. A widely applied strategy to analyze intensity traces over time is the quantification of photobleaching step counts. However, several factors can limit and bias the detection of photobleaching steps, including noise, high numbers of fluorophores, and the possibility that several photobleaching events occur almost simultaneously. In this study, we propose a new approach, to our knowledge, to determine the fluorophore number that correlates the intensity decay of a population of molecule complexes with the decay of the number of visible complexes. We validated our approach using single and fourfold Atto-labeled DNA strands. As an example we estimated the subunit stoichiometry of soluble CD95L using GFP fusion proteins. To assess the precision of our method we performed in silico experiments showing that the estimates are not biased for experimentally observed intensity fluctuations and that the relative precision remains constant with increasing number of fluorophores. In case of fractional fluorescent labeling, our simulations predicted that the fluorophore number estimate corresponds to the product of the true fluorophore number with the labeling fraction. Our method, denoted by spot number and intensity correlation (SONIC), is fully automated, robust to noise, and does not require the counting of photobleaching events.  相似文献   
8.

Background

SOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined.

Results

We show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells.

Conclusions

We present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community.  相似文献   
9.
10.
Stimulation of CD95/Fas/APO-1 results in the induction of both apoptotic and non-apoptotic signaling pathways. The processes regulating these two opposing pathways have not been thoroughly elucidated to date. In this study, using quantitative immunoblots, imaging, and mathematical modeling, we addressed the dynamics of the DED proteins of the death-inducing signaling complex (DISC), procaspase-8, and cellular FLICE inhibitory proteins (c-FLIPs) to the onset of CD95-mediated ERK1/2 and p38 mitogen-activated protein kinase (MAPK) activation. We found that CD95 DISC-induced caspase-8 activity is important for the initiation of ERK1/2 and p38 MAPK activation. The long c-FLIP isoform, c-FLIPL, and the short c-FLIP isoform, c-FLIPR, inhibited MAPK induction by blocking caspase-8 processing at the DISC. Furthermore, we built a mathematical model describing CD95 DISC-mediated MAPK activation and apoptosis. The model quantitatively defined the dynamics of DED proteins, procaspase-8, and c-FLIP, which lead to caspase-8 activation and induction of apoptotic and non-apoptotic signaling pathways. In conclusion, the combination of biochemical analysis with mathematical modeling provides evidence for an important role of caspase-8 in CD95-mediated activation of MAPKs, while c-FLIP exerts a regulatory function in this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号