首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   35篇
  2023年   1篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   9篇
  2013年   20篇
  2012年   29篇
  2011年   32篇
  2010年   15篇
  2009年   8篇
  2008年   27篇
  2007年   20篇
  2006年   24篇
  2005年   24篇
  2004年   20篇
  2003年   18篇
  2002年   26篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
  1970年   2篇
  1969年   2篇
  1967年   1篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
1.
2.
A new experimental model for studying the effects of acute ischemia on brain development in the near-term fetal rat has been devised. Ischemic conditions are achieved by complete clamping of blood vessels branching from the uterine vasculature into each individual fetus for designated times followed by removal of the clamps to permit reperfusion. Accumulation of lactic acid in the fetal brain depends on the length of the restriction period, reaching a plateau level of 29 mumol/g tissue at about 30 min. It also depends on the reperfusion time. Thus after a period of 15 min of restriction lactate levels show an increase over the next 30-min reperfusion to a value of 25.5 mumol/g followed by a rapid decrease to normal values by 3 h of reperfusion. Restriction of 15 min followed by reperfusion of 45 min causes an elevation of prostaglandin E2 (PGE2) level from 12.4 +/- 0.86 ng/g to 21.1 +/- 0.6 ng/g (p less than 0.001). This elevation in PGE2 level is less apparent after 20 min of restriction. No effects are seen on the level of PGF2 alpha. Both PGE2 and PGF2 alpha accumulate in vitro in a time-dependent manner by brain particulate fraction. In vitro synthesis of both PGE2 and PGF2 alpha is inhibited by indomethacin (100% and 68%, respectively) and AA861 (94% and 76%, respectively). BW755c and nordihydroguaiaretic acid do not affect PGE2 formation but enhance PGF2 alpha production by 112% and 152%, respectively. Particulate fractions from restricted brain produce less PGF2 alpha than control brains (6.38 +/- 1.62 versus 11.43 +/- 2.2, p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
The appearance of arachidonic acid (AA) oxidation products in fetal rabbit brain and placenta under normal or partial short-term ischemic episodes induced by placental blood vessel restriction was examined. Intracerebral administration of [3H]AA into close-to-term rabbit fetuses gave rise to radioactively labeled prostaglandin (PG) E2, thromboxane B2, and 6-keto-PGF1 alpha metabolites as detected by HPLC analysis. A significant increase of 20-30% of [3H]AA precursor into eicosanoids was detected in brain of fetuses after 2-h restriction. The thromboxane B2 and 6-keto-PGF1 alpha levels were determined by radioimmunoassay technique over a period of 48 h following ischemic episodes. Thromboxane B2 content in affected animals was higher by five- and twofold at 3 h over control fetal brain and placental tissue values, respectively, and remained significantly higher for 24 h. 6-Keto-PGF1 alpha levels reached a peak value that was greater by 2.5- and 1.5-fold at 6 h for the ischemic brain and placental tissue, respectively, compared with control fetuses. PGE2 levels were less affected, attaining a maximum of 1.9- and 1.1-fold in brain and placenta correspondingly. The thromboxane/prostacyclin ratio reached a maximum in the brain after approximately 3 h, while that in the placenta continued to rise even after 20 h. Persisting high levels of thromboxane are indicative of cerebral vasoconstriction and may suggest possible damaging effects.  相似文献   
4.
Summary Two approaches are described for the localization and quantification of biotin transport components in yeast cells. One approach is based on tracing the fate of a radioactive affinity label for the biotin transport system, [14C]-biotinyl-p-nitrophenyl ester (pBNP), through various stages of subcellular fractionations. A complementary method involves the use of a biotinderivatized, impermeant, electron-dense, affinity-cytochemical label (ferritin-biotin conjugates) for subsequent visualization by electron microscopy. Values of approximately 8,000 and 4,000 sites/cell, respectively, were achieved by the two methods. Complicating factors, future perspectives and the relevance of the two methods to the isolation of transport components are discussed.  相似文献   
5.
Toxin–antitoxin (TA) systems are small genetic modules usually consisting of two elements—a toxin and an antitoxin. The abundance of TA systems among various bacterial strains may indicate an important evolutionary role. Pseudomonas aeruginosa, which can be found in a variety of niches in nature, is an opportunistic pathogen for various hosts. While P. aeruginosa strains are very versatile and diverse, only a few TA systems were characterized in this species. Here, we describe a newly characterized TA system in P. aeruginosa that is encoded within the filamentous Pf4 prophage. This system, named PfiT/PfiA, is a homologue of the ParE/YefM TA system. It is a type II TA system, in which the antitoxin is a protein that binds the toxic protein and eliminates the toxic effect. PfiT/PfiA carries several typical type II characteristics. Specifically, it constitutes two small genes expressed in a single operon, PfiT inhibits growth and PfiA eliminates this effect, PfiA binds PfiT, and PfiT expression results in elongated cells. Finally, we assigned a novel function to this TA system, where an imbalance between PfiT and PfiA, favouring the toxin, resulted in cell elongation and an increase in virion production.  相似文献   
6.
7.
8.
Chemical chaperones are small organic molecules which accumulate in a broad range of organisms in various tissues under different stress conditions and assist in the maintenance of a correct proteostasis under denaturating environments. The effect of chemical chaperones on protein folding and aggregation has been extensively studied and is generally considered to be mediated through non-specific interactions. However, the precise mechanism of action remains elusive. Protein self-assembly is a key event in both native and pathological states, ranging from microtubules and actin filaments formation to toxic amyloids appearance in degenerative disorders, such as Alzheimer''s and Parkinson''s diseases. Another pathological event, in which protein assembly cascade is a fundamental process, is the formation of virus particles. In the late stage of the virus life cycle, capsid proteins self-assemble into highly-ordered cores, which encapsulate the viral genome, consequently protect genome integrity and mediate infectivity. In this study, we examined the effect of different groups of chemical chaperones on viral capsid assembly in vitro, focusing on HIV-1 capsid protein as a system model. We found that while polyols and sugars markedly inhibited capsid assembly, methylamines dramatically enhanced the assembly rate. Moreover, chemical chaperones that inhibited capsid core formation, also stabilized capsid structure under thermal denaturation. Correspondingly, trimethylamine N-oxide, which facilitated formation of high-order assemblies, clearly destabilized capsid structure under similar conditions. In contrast to the prevailing hypothesis suggesting that chemical chaperones affect proteins through preferential exclusion, the observed dual effects imply that different chaperones modify capsid assembly and stability through different mechanisms. Furthermore, our results indicate a correlation between the folding state of capsid to its tendency to assemble into highly-ordered structures.  相似文献   
9.
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle, caused by multiple pathogens that become more virulent in response to stress. As clinical signs often go undetected and various preventive strategies failed, identification of genes affecting BRD is essential for selection for resistance. Selective DNA pooling (SDP) was applied in a genome wide association study (GWAS) to map BRD QTLs in Israeli Holstein male calves. Kosher scoring of lung adhesions was used to allocate 122 and 62 animals to High (Glatt Kosher) and Low (Non-Kosher) resistant groups, respectively. Genotyping was performed using the Illumina BovineHD BeadChip according to the Infinium protocol. Moving average of -logP was used to map QTLs and Log drop was used to define their boundaries (QTLRs). The combined procedure was efficient for high resolution mapping. Nineteen QTLRs distributed over 13 autosomes were found, some overlapping previous studies. The QTLRs contain polymorphic functional and expression candidate genes to affect kosher status, with putative immunological and wound healing activities. Kosher phenotyping was shown to be a reliable means to map QTLs affecting BRD morbidity.  相似文献   
10.
ObjectiveTo compare perinatal outcome and glycaemic control in two groups of pregnant diabetic patients receiving two insulin regimens.DesignRandomised controlled open label study.SettingUniversity affiliated hospital, Israel.Participants138 patients with gestational diabetes mellitus and 58 patients with pregestational diabetes mellitus received insulin four times daily, and 136 patients with gestational diabetes and 60 patients with pregestational diabetes received insulin twice daily.InterventionThree doses of regular insulin before meals and an intermediate insulin dose before bedtime (four times daily regimen), and a combination of regular and intermediate insulin in the morning and evening (twice daily regimen).ResultsMean daily insulin concentration before birth was higher in the women receiving insulin four times daily compared with twice daily: by 22 units (95% confidence interval 12 to 32) in patients with gestational diabetes and by 28 units (15 to 41) in patients with pregestational diabetes. Glycaemic control was better with the four times daily regimen than with the twice daily regimen: in patients with gestational diabetes mean blood glucose concentrations decreased by 0.19 mmol/l (0.13 to 0.25), HbA1c by 0.3% (0.2% to 0.4%), and fructosamine by 41 μmol/l (37 to 45), and adequate glycaemic control (mean blood glucose concentration <5.8 mmol/l) was achieved in 17% (8% to 26%) more women; in patients with pregestational diabetes mean blood glucose concentration decreased by 0.44 mmol/l (0.28 to 0.60), HbA1c by 0.5% (0.2% to 0.8%), and fructosamine by 51 μmol/l (45 to 57), and adequate glycaemic control was achieved in 31% (15% to 47%) more women. Maternal severe hypoglycaemic events, caesarean section, preterm birth, macrosomia, and low Apgar scores were similar in both dose groups. In women with gestational diabetes the four times daily regimen resulted in a lower rate of overall neonatal morbidity than the twice daily regimen (relative risk 0.59, 0.38 to 0.92), and the relative risk for hyperbilirubinaemia and hypoglycaemia was lower (0.51, 0.29 to 0.91 and 0.12, 0.02 to 0.97 respectively). The relative risk of hypoglycaemia in newborn infants to mothers with pregestational diabetes was 0.17 (0.04 to 0.74).ConclusionsGiving insulin four times rather than twice daily in pregnancy improved glycaemic control and perinatal outcome without further risking the mother.

Key messages

  • Improving maternal glycaemic control during pregnancy is the key to better perinatal outcome
  • In pregnant diabetic women insulin four times daily achieved better glycaemic control and lower rate of perinatal complications (hypoglycaemia, hyperbilirubinaemia) than insulin twice daily
  • Better glycaemic control resulted from a larger total daily insulin dose
  • The intensified regimen did not lead to higher rate of severe maternal hypoglycaemia
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号