首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   52篇
  2022年   2篇
  2021年   10篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   20篇
  2012年   18篇
  2011年   14篇
  2010年   11篇
  2009年   9篇
  2008年   13篇
  2007年   18篇
  2006年   16篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   16篇
  2000年   7篇
  1999年   8篇
  1998年   12篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   9篇
  1992年   9篇
  1991年   6篇
  1990年   12篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   5篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1961年   1篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
1.
A maize acetyl-coenzyme A carboxylase cDNA sequence.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   
2.
Summary This contribution deals with problems associated with the culture of a thermotolerant methylotrophic Bacillus sp. The results reported clearly demonstrate why conventional enrichment/isolation procedures have, in the past, failed to allow such microbes to assert themselves. The catastrophic effect of carbon substrate (methanol) exhaustion on such cultures is clearly evidenced, but the effects of other nutrient exhaustion or limitations are demonstrated to be markedly less stringent. The failure of such cultures to complete the sporulation process when growing on methanol has important consequences with respect to their survival characteristics.  相似文献   
3.
Effective (N2-fixing) alfalfa (Medicago sativa L.) and plant-controlled ineffective (non-N2-fixing) alfalfa recessive for the in1 gene were compared to determine the effects of the in1 gene on nodule development, acetylene reduction activity (ARA), and nodule enzymes associated with N assimilation and disease resistance. Effective nodule ARA reached a maximum before activities of glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AAT), asparagine synthetase (AS), and phosphoenolpyruvate carboxylase (PEPC) peaked. Ineffective nodule ARA was only 5% of effective nodule ARA. Developmental profiles of GS, GOGAT, AAT, and PEPC activities were similar for effective and ineffective nodules, but activities in ineffective nodules were lower and declined earlier. Little AS activity was detected in developing ineffective nodules. Changes in GS, GOGAT, AAT, and PEPC activities in developing and senescent effective and ineffective nodules generally paralleled amounts of immunologically detectable enzyme polypeptides. Effective nodule GS, GOGAT, AAT, AS, and PEPC activities declined after defoliation. Activities of glutamate dehydrogenase, malate dehydrogenase, phenylalanine ammonia lyase, and caffeic acid-o-methyltransferase were unrelated to nodule effectiveness. Maximum expression of nodule N-assimilating enzymes appeared to require the continued presence of a product associated with effective bacteroids that was lacking in in1 effective nodules.  相似文献   
4.
Structure of 11-deoxydaunomycin bound to DNA containing a phosphorothioate   总被引:1,自引:0,他引:1  
The anthracyclines form an important family of cancer chemotherapeutic agents with a strong dependence of clinical properties on minor differences in chemical structure. We describe the X-ray crystallographic solution of the three-dimensional structure of the anthracycline 11-deoxydaunomycin plus d(CGTsACG). In this complex, two drug molecules bind to each hexamer duplex. Both the drug and the DNA are covalently modified in this complex in contrast with the three previously reported DNA-anthracycline complexes. In the 11-deoxydaunomycin complex the 11 hydroxyl group is absent and a phosphate oxygen at the TpA step has been replaced by a sulfur atom leading to a phosphorothioate with absolute stereochemistry R. Surprisingly, removal of a hydroxyl group from the 11 position does not alter the relative orientation of the intercalated chromophore. However, it appears that the phosphorothioate modification influenced the crystallization and caused the 11-deoxydaunomycin-d(CGTsACG) complex to crystallize into a different lattice (space group P2) with different lattice contacts and packing forces than the non-phosphorothioated DNA-anthracycline complexes (space group P4(1)2(1)2). In the minor groove of the DNA, the unexpected position of the amino-sugar of 11-deoxydaunomycin supports the hypothesis that in solution the position of the amino sugar is dynamic.  相似文献   
5.
The abundances of ribulose-1,5-bisphosphate carboxylate/oxygenase (Rubisco) and ribulose-5-phosphate (Ru5P) kinase in field-grown soybean (Glycine max L. Merr.) leaves were quantified by a Western blot technique and related to changes in chlorophyll and photosynthetic capacity during senescence. Even though the leaf content of Rubisco was approximately 80-fold greater than that of Ru5P kinase, the decline in the levels of these two Calvin cycle enzymes occurred in parallel during the senescence of the leaves. Moreover, the decrease in the content of Rubisco was accompanied by parallel decreases of both the large and small subunits of this enzyme but not by an accumulation of altered large or small subunit isoforms. With increasing senescence, decreases in abundances of Rubisco, Ru5P kinase and chlorophyll were closely correlated with the decline in photosynthetic capacity; thus, the specific photosynthetic capacity when expressed per abundance of any of these parameters was rather constant despite an 8-fold decrease in photosynthetic capacity. These results suggest that during senescence of soybean leaves the chloroplast is subject to autolysis by mechanisms causing an approximately 80-fold greater rate of loss of Rubisco than Ru5P kinase.Jointly supported by the United States Department of Agricultural Research Service and the Kentucky Agricultural Experiment Station, Lexington (paper No. 88 3 286).Mention of a commercial product does not constitute endorsement by the United States Department of Agriculture.  相似文献   
6.
Detailed comparison of growth kinetics at temperatures below and above the optimal temperature was carried out with Escherichia coli ML 30 (DSM 1329) in continuous culture. The culture was grown with glucose as the sole limiting source of carbon and energy (100 mg liter(-1) in feed medium), and the resulting steady-state concentrations of glucose were measured as a function of the dilution rate at 17.4, 28.4, 37, and 40 degrees C. The experimental data could not be described by the conventional Monod equation over the entire temperature range, but an extended form of the Monod model [mu = mu(max) x (s - s(min))/(Ks + s - s(min))], which predicts a finite substrate concentration at 0 growth rate (s(min)), provided a good fit. The two parameters mu(max) and s(min) were temperature dependent, whereas, surprisingly, fitting the model to the experimental data yielded virtually identical Ks values (approximately 33 microg liter(-1)) at all temperatures. A model that describes steady-state glucose concentrations as a function of temperature at constant growth rates is presented. In similar experiments with mixtures of glucose and galactose (1:1 mixture), the two sugars were utilized simultaneously at all temperatures examined, and their steady-state concentrations were reduced compared with to growth with either glucose or galactose alone. The results of laboratory-scale kinetic experiments are discussed with respect to the concentrations observed in natural environments.  相似文献   
7.
Characterization of Maize Acetyl-Coenzyme A Carboxylase   总被引:23,自引:15,他引:8       下载免费PDF全文
Maize (Zea mays L.) leaf acetyl-CoA carboxylase (ACCase) was purified about 500-fold by ammonium sulfate fractionation and gel filtration and blue Sepharose affinity and anion-exchange chromatography. Most ACCase activity (85%) recovered from the anion-exchange column was found in a highly purified fraction (specific activity 5.5 [mu]mol acid-stable product min-1 mg-1) that consisted primarily of a single 227-kD biotinylated polypeptide. The fraction represented 29% of the original activity and was designated ACCase I. A second partially purified ACCase activity (ACCase II) eluted earlier during anion-exchange chromatography, contained a single biotinylated polypeptide of 219 kD, was poorly recognized by antiserum raised against the ACCase I polypeptide, and was less inhibited by the herbicides haloxyfop or sethoxydim than was ACCase I. ACCase I and II both utilized propionyl-CoA as substrate about 50% as effectively as acetyl-CoA, and neither utilized methylcrotonyl-CoA. Immunoprecipitation with antiserum and protein blotting of crude extracts of leaf, embryo, and endosperm tissue and suspension cells indicated that most ACCase activity in these tissues was immunologically similar and consisted of ACCase I. Only leaves contained significant amounts of the ACCase II polypeptide; however, no ACCase II polypeptide was found in isolated mesophyll chloroplasts. The ACCase I and II polypeptides appear to be subunits of distinct ACCase isoforms.  相似文献   
8.
Kinetics of microbial growth with mixtures of carbon sources   总被引:11,自引:0,他引:11  
  相似文献   
9.
A mutation (Acc1-S2) in the structural gene for maize (Zea mays L.) acetyl-coenzyme A carboxylase (ACCase) that significantly reduces sethoxydim inhibition of leaf ACCase activity was used to investigate the gene-enzyme relationship regulating ACCase activity during oil deposition in developing kernels. Mutant embryo and endosperm ACCase activities were more than 600-fold less sensitive to sethoxydim inhibition than ACCase in wild-type kernel tissues. Moreover, in vitro cultured mutant kernels developed normally in the presence of sethoxydim concentrations that inhibited wild-type kernel development. The results indicate that the Acc1-encoded ACCase accounts for the majority of ACCase activity in developing maize kernels, suggesting that Acc1-encoded ACCase functions not only during membrane biogenesis in leaves but is also the predominant form of ACCase involved in storage lipid biosynthesis in maize embryos.  相似文献   
10.
Lin PP  Egli DB  Li GM  Meckel L 《Plant physiology》1984,76(2):366-371
Active polyamine metabolism occurs in Glycine max (L.) seeds during development. Most (≥97%) of putrescine (Put), spermidine (Spd), spermine (Spm), and cadaverine (Cad) are present as free forms in the growing embryo. In the cotyledon or embryonic axis, Put decreases to a nearly undetectable level, while Spd level sharply increases as seed dry weight accumulation progresses. Spm level in the axis also increases along with the Spd level. There is little change in Spm level in the cotyledons. Maturation and dehydration results in a slight reduction of Spd level in the cotyledons. Cad is present in relatively large quantities (5.5-12 micromoles per gram dry weight) in the axes of mature soybean seeds. Only traces of Cad, as expressed on a dry weight basis, are found in the developing or mature cotyledons. The synthesis and accumulation of Cad in the axis begins at the time when the axis or the seed accumulates 30 to 50% of its maximum dry weight. The Cad accumulation (0.8 nanomole per axis per day) proceeds until the later stages of dehydration. When soybean plants are subjected to complete defoliation and shade during the midpoint of seed maturation, Cad accumulation in the axis and seed dry weight accumulation ceased almost immediately. The treatment, however, does not affect the viability of soybean seeds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号