首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   4篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Summary Transforming growth factor- (TGF-) is a biologically active polypeptide present in normal tissues as well as transformed cells. Two structurally related forms of this peptide are TGF- 1 and TGF- 2. Using freshly isolated cardiomyocytes and non-myocyte heart cells, and a [32P]-labelled cDNA probe to human TGF- 1, we demonstrated that mRNA for TGF- 1 could be detected only in the nonmyocyte fraction of heart cells. In the present study, the distribution of TGF- 1 in the heart was determined by immunofluorescence staining by use of a polyclonal antibody to porcine TGF- 1 in cryostat sections of rat heart. Immunofluorescence staining was intense around the blood vessels and radially diffuse in the surrounding myocardium.  相似文献   
2.
Summary Previous studies have indicated that the asymmetric form of acetylcholinesterase (collagen-tailed) is localized in the basal lamina of the neuromuscular junction of skeletal muscle. The present study shows localization of the asymmetric acetylcholinesterase in the heart of the rat. Antiserum to 14+18 S acetylcholinesterase of the electric eel was raised in rabbits. The purified antibody did not react with collagen type I or laminin. Collagenase reduced the immunoreactivity of the enzyme with the purified antibody. Isolated cardiomyocytes and frozen sections of the heart were stained for acetylcholinesterase with the antibody. Diffuse immunofluorescence appeared over the surface of the cardiomyocytes. In the frozen sections, the immunofluorescence was most intense at the cell boundaries. These data suggest that collagenase-sensitive acetylcholinesterase in the heart is present in the myocytes and occurs in the vicinity of the basal lamina.Abbreviations AChE acetylcholinesterase - BSA bovine serum albumin - PBS phosphate-buffered saline - DME Dulbecco's Modified Eagle Medium  相似文献   
3.
Summary In the heart of the adult rat, fibroblasts are mainly responsible for the synthesis and deposition of the collagenous matrix. Because these cells in vitro may serve as an important model system for studies of collagen metabolism in heart tissue, we have cultured and characterized rat-heart fibroblasts from young adult and old animals. Conditions included use of media of different compositions with and without addition of ascorbate. Cell used were either cultured directly from fresh tissues or thawed previously frozen cells. Cultured cells were studied with respect to growth properties, morphology and ultrastructure and patterns of collagen. Heart fibroblasts generally resembled fibroblasts cultured from other tissues, but were more like skeletal muscle fibroblasts in that they deposited, in addition to type I collagen, type IV collagen and laminin. The fibroblasts showed a typical appearance in phase-contrast microscopy and electron microscopy. In the case of cells grown with added ascorbate, aligned collagen fibrils in the extracellular matrix showed a periodicity typical of type I collagen. The deposition of type I collagen occurred only in medium supplemented with ascorbate, and in that circumstance increased as a function of time past confluence; this was independent of the age of the animal from which the cells were obtained or of other changes of medium composition studied. Immunofluorescence studies with specific antibodies revealed that the cells deposited types I and IV collagens, laminin and fibronectin. In contrast to the case of type I collagen, the deposition of type IV collagen occurred in cells grown either with or without ascorbate. Direct observation of type IV collagen is consistent with the previous finding of type IV mRNA in cardiac fibroblasts in situ and in freshly isolated populations of these cells.  相似文献   
4.
We identified a novel MaxiK alpha subunit splice variant (SV1) from rat myometrium that is also present in brain. SV1 has a 33-amino acid insert in the S1 transmembrane domain that does not alter S1 overall hydrophobicity, but makes the S0-S1 linker longer. SV1 was transfected in HEK293T cells and studied using immunocytochemistry and electrophysiology. In non-permeabilized cells, N-terminal c-Myc- or C-terminal green fluorescent protein-tagged SV1 displayed no surface labeling or currents. The lack of SV1 functional expression was due to endoplasmic reticulum (ER) retention as determined by colabeling experiments with a specific ER marker. To explore the functional role of SV1, we coexpressed SV1 with the alpha (human SLO) and beta1 (KCNMB1) subunits of the MaxiK channel. Coexpression of SV1 inhibited surface expression of alpha and beta1 subunits approximately 80% by trapping them in the ER. This inhibition seems to be specific for MaxiK channel subunits since SV1 was unable to prevent surface expression of the Kv4.3 channel or to interact with green fluorescent protein. These results indicate a dominant-negative role of SV1 in MaxiK channel expression. Moreover, they reveal down-regulation by splice variants as a new mechanism that may contribute to the diverse levels of MaxiK channel expression in non-excitable and excitable cells.  相似文献   
5.
To quantify spatial protein-protein proximity (colocalization) in paired microscopic images of two sets of proteins labeled by distinct fluorophores, we showed that the cross-correlation and the autocorrelation functions of image intensity consisted of fast and slowly decaying components. The fast component resulted from clusters of proteins specifically labeled, and the slow component resulted from image heterogeneity and a broadly-distributed background. To better evaluate spatial proximity between the two specifically labeled proteins, we extracted the fast-decaying component by fitting the sharp peak in correlation functions to a Gaussian function, which was then used to obtain protein-protein proximity index and the Pearson's correlation coefficient. We also employed the median-filter method as a universal approach for background reduction to minimize nonspecific fluorescence. We illustrated our method by analyzing computer-simulated images and biological images.  相似文献   
6.
The localization of sarcolemmal proteins within the membrane can have a dramatic effect on excitation-contraction coupling. We examine the localization of the Na+-Ca2+ exchanger, the dihydropyridine receptor, and other proteins involved in excitation-contraction coupling in rat heart using biochemical and immunolocalization techniques. Specifically, we assess the distribution of proteins within the lipid raft fraction of the sarcolemma. We find that the distribution of proteins in lipid raft fractions is very dependent on the solubilization technique. A common technique using sodium carbonate/pH 11 to solubilize non-lipid raft proteins was inappropriate for use with sarcolemmal membranes. Use of Triton X-100 was more efficacious as a solubilization agent. A large majority of the Na+-Ca2+ exchanger, Na+/K+-ATPase, and plasma membrane Ca2+ pump are not present in lipid rafts. In contrast, most adenosine A1 receptors and dihydropyridine receptors were in lipid raft fractions. Most of the adenosine A1 receptors could be co-immunoprecipitated with caveolin indicating a localization to caveolae (a subclass of lipid rafts). In contrast, the dihydropyridine receptors could not be co-immunoprecipitated with caveolin. Most biochemical data were confirmed by high resolution immunolocalization studies. Using correlation analysis, only a small fraction of the Na+-Ca2+ exchangers colocalized with caveolin whereas a substantial fraction of dihydropyridine and adenosine A1 receptors did colocalize with caveolin. The most pertinent findings are that the Na+-Ca2+ exchanger and the dihydropyridine receptor are in separate sarcolemmal subcompartments. These spatial relationships may be relevant for understanding excitation-contraction coupling.  相似文献   
7.
The large conductance, voltage- and Ca2+-activated potassium (MaxiK, BK) channel and caveolin-1 play important roles in regulating vascular contractility. Here, we hypothesized that the MaxiK alpha-subunit (Slo1) and caveolin-1 may interact with each other. Slo1 and caveolin-1 physiological association in native vascular tissue is strongly supported by (i) detergent-free purification of caveolin-1-rich domains demonstrating a pool of aortic Slo1 co-migrating with caveolin-1 to light density sucrose fractions, (ii) reverse co-immunoprecipitation, and (iii) double immunolabeling of freshly isolated myocytes revealing caveolin-1 and Slo1 proximity at the plasmalemma. In HEK293T cells, Slo1-caveolin-1 association was unaffected by the smooth muscle MaxiK beta1-subunit. Sequence analysis revealed two potential caveolin-binding motifs along the Slo1 C terminus, one equivalent, 1007YNMLCFGIY1015, and another mirror image, 537YTEYLSSAF545, to the consensus sequence, varphiXXXXvarphiXXvarphi. Deletion of 1007YNMLCFGIY1015 caused approximately 80% loss of Slo1-caveolin-1 association while preserving channel normal folding and overall Slo1 and caveolin-1 intracellular distribution patterns. 537YTEYLSSAF545 deletion had an insignificant dissociative effect. Interestingly, caveolin-1 coexpression reduced Slo1 surface and functional expression near 70% without affecting channel voltage sensitivity, and deletion of 1007YNMLCFGIY1015 motif obliterated channel surface expression. The results suggest 1007YNMLCFGIY1015 possible participation in Slo1 plasmalemmal targeting and demonstrate its role as a main mechanism for caveolin-1 association with Slo1 potentially serving a dual role: (i) maintaining channels in intracellular compartments downsizing their surface expression and/or (ii) serving as anchor of plasma membrane resident channels to caveolin-1-rich membranes. Because the caveolin-1 scaffolding domain is juxtamembrane, it is tempting to suggest that Slo1-caveolin-1 interaction facilitates the tethering of the Slo1 C-terminal end to the membrane.  相似文献   
8.
Fibrillar collagen in the myocardium provides a supportive framework for myocytes and capillaries. Disruption of this organized framework has been observed in certain pathological states. Collagen degradation is primarily mediated by the specific enzyme collagenase, which has been found to exist in various tissues including the myocardium. In this report we describe a method that detects collagenase activity in sections of cardiac tissue. This method is on the basis of degradation of collagen by collagenase on one hand and the visualization of disrupted collagen fibers by immunofluorescence on the other. Frozen rat heart sections were incubated under optimal conditions for collagenase activity (37 degrees C in the presence of 0.1 M calcium at pH 7.4) for 24 h and 48 h. Subsequently, immunofluorescence staining with antibody to type I collagen was performed and the collagenous structures were visualized by immunofluorescence light microscopy. As control, untreated rat heart sections and sections incubated in the absence of calcium were similarly treated with antibody. After the 24 h of incubation, we found no change in the structural integrity of collagen fibers. Marked disruption of the type I collagen fibers was observed 48 h after incubation. No evidence of collagen fiber disruption was found in control sections. Experiments with exogenous collagenase resulted in similar collagen fiber disruption in the frozen rat heart sections. We conclude that the disruption of collagen type I fibers after 48 h of incubation, under optimal conditions for collagenolytic digestion, is the result of collagen degradation by intrinsic collagenase of the myocardium.  相似文献   
9.
10.
Different types of distinct molecular forms of collagen are components of the extracellular matrix in most tissues. The common types can usually be detected by immunohistochemical methods but others may escape detection for lack of specific antisera. However, all these collagens are substrates for the collagenase of Clostridium histolyticum. In this report we describe a method that allows the visualization of collagens, collectively, in a tissue preparation. The method is based on the affinity between clostridial collagenase and collagen on one hand, and collagenase and its antibody on the other. Under the conditions of low temperature used in the procedure, collagenase binds to collagen, but digestion does not occur. Subsequent reaction of the bound collagenase with the specific collagenase antibody is followed by reaction with a tagged anti-IgG reagent. This allows the visualization of the enzyme-substrate complex. The procedure is illustrated in sections of the heart and the aorta, as well as in the isolated cardiomyocytes and the collagen distribution is verified using collagens type I and IV specific antibodies. In all instances the collagenase staining pattern includes all structural features seen individually with the type specific anticollagen antibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号