首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   9篇
  2023年   1篇
  2021年   7篇
  2020年   2篇
  2019年   7篇
  2018年   12篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   8篇
  2013年   9篇
  2012年   27篇
  2011年   22篇
  2010年   13篇
  2009年   9篇
  2008年   20篇
  2007年   19篇
  2006年   23篇
  2005年   10篇
  2004年   10篇
  2003年   16篇
  2002年   8篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1975年   1篇
  1973年   3篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The use of Process Analytical Technology tools coupled with chemometrics has been shown great potential for better understanding and control of mammalian cell cultivations through real-time process monitoring. In-line Raman spectroscopy was utilized to determine the glucose concentration of the complex bioreactor culture medium ensuring real-time information for our process control system. This work demonstrates a simple and fast method to achieve a robust partial least squares calibration model under laboratory conditions in an early phase of the development utilizing shake flask and bioreactor cultures. Two types of dynamic feeding strategies were accomplished where the multi-component feed medium additions were controlled manually and automatically based on the Raman monitored glucose concentration. The impact of these dynamic feedings was also investigated and compared to the traditional bolus feeding strategy on cellular metabolism, cell growth, productivity, and binding activity of the antibody product. Both manual and automated dynamic feeding strategies were successfully applied to maintain the glucose concentration within a narrower and lower concentration range. Thus, besides glucose, the glutamate was also limited at low level leading to reduced production of inhibitory metabolites, such as lactate and ammonia. Consequently, these feeding control strategies enabled to provide beneficial cultivation environment for the cells. In both experiments, higher cell growth and prolonged viable cell cultivation were achieved which in turn led to increased antibody product concentration compared to the reference bolus feeding cultivation.  相似文献   
5.
Copper (I) binding by metallochaperone transport proteins prevents copper oxidation and release of the toxic ions that may participate in harmful redox reactions. The Cu (I) complex of the peptide model of a Cu (I) binding metallochaperone protein, which includes the sequence MTCSGCSRPG (underlined is conserved), was determined in solution under inert conditions by NMR spectroscopy.NMR is a widely accepted technique for the determination of solution structures of proteins and peptides. Due to difficulty in crystallization to provide single crystals suitable for X-ray crystallography, the NMR technique is extremely valuable, especially as it provides information on the solution state rather than the solid state. Herein we describe all steps that are required for full three-dimensional structure determinations by NMR. The protocol includes sample preparation in an NMR tube, 1D and 2D data collection and processing, peak assignment and integration, molecular mechanics calculations, and structure analysis. Importantly, the analysis was first conducted without any preset metal-ligand bonds, to assure a reliable structure determination in an unbiased manner.  相似文献   
6.

Background

Methanogenesis can indicate the fermentation activity of the gastrointestinal anaerobic flora. Methane also has a demonstrated anti-inflammatory potential. We hypothesized that enriched methane inhalation can influence the respiratory activity of the liver mitochondria after an ischemia-reperfusion (IR) challenge.

Methods

The activity of oxidative phosphorylation system complexes was determined after in vitro methane treatment of intact liver mitochondria. Anesthetized Sprague-Dawley rats subjected to standardized 60-min warm hepatic ischemia inhaled normoxic air (n = 6) or normoxic air containing 2.2% methane, from 50 min of ischemia and throughout the 60-min reperfusion period (n = 6). Measurement data were compared with those on sham-operated animals (n = 6 each). Liver biopsy samples were subjected to high-resolution respirometry; whole-blood superoxide and hydrogen peroxide production was measured; hepatocyte apoptosis was detected with TUNEL staining and in vivo fluorescence laser scanning microscopy.

Results

Significantly decreased complex II-linked basal respiration was found in the normoxic IR group at 55 min of ischemia and a lower respiratory capacity (~60%) and after 5 min of reperfusion. Methane inhalation preserved the maximal respiratory capacity at 55 min of ischemia and significantly improved the basal respiration during the first 30 min of reperfusion. The IR-induced cytochrome c activity, reactive oxygen species (ROS) production and hepatocyte apoptosis were also significantly reduced.

Conclusions

The normoxic IR injury was accompanied by significant functional damage of the inner mitochondrial membrane, increased cytochrome c activity, enhanced ROS production and apoptosis. An elevated methane intake confers significant protection against mitochondrial dysfunction and reduces the oxidative damage of the hepatocytes.  相似文献   
7.
8.
Raman spectroscopy as a process analytical technology tool was implemented for the monitoring and control of ethanol fermentation carried out with Saccharomyces cerevisiae. The need for the optimization of bioprocesses such as ethanol production, to increase product yield, enhanced the development of control strategies. The control system developed by the authors utilized noninvasive Raman measurements to avoid possible sterilization problems. Real-time data analysis was applied using partial least squares regression (PLS) method. With the aid of spectral pretreatment and multivariate data analysis, the monitoring of glucose and ethanol concentration was successful during yeast fermentation with the prediction error of 4.42 g/L for glucose and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glucose concentration was maintained at 100 g/L by the automatic feeding of concentrated glucose solution. The control of glucose concentration during fed-batch fermentation resulted in increased ethanol production. Ethanol yield of 86% was achieved compared to the batch fermentation when 75 % yield was obtained. The results show that the use of Raman spectroscopy for the monitoring and control of yeast fermentation is a promising way to enhance process understanding and achieve consistently high production yield.  相似文献   
9.
Compounds that contain an alpha,beta-unsaturated carbonyl moiety are often flagged as potential Michael acceptors. All alpha,beta-unsaturated carbonyl moieties are not equivalent, however, and we sought to better understand this system and its potential implications in drug-like molecules. Measurement of the (13)C NMR shift of the beta-carbon and correlation to in vitro results allowed compounds in our collection to be categorized as potential Michael acceptors, potential substrates for NADPH, or as photoisomerizable.  相似文献   
10.
Intravenous injection of a cartilage proteoglycan (aggrecan)-specific Th1 hybridoma clone 5/4E8 induced joint lesions similar to those seen in either primary or adoptively transferred arthritis in BALB/c mice. A sister clone, TA20, recognizing the same peptide epitope of human aggrecan and using the same Vbeta4 and Valpha1 segments, failed to induce joint inflammation. This study examines the fine epitope specificities of these two clones. Both 5/4E8 and TA20 hybridomas were generated using T cells from the same arthritic animal that has been immunized with human aggrecan, and both clones recognized peptides containing a consensus GRVRVNSAY sequence. However, flanking regions outside this nonapeptide sequence region had differential impact on peptide recognition by the two clones. Similarly, when single amino acid substitutions were introduced to the consensus sequence, significant differences were detected in the epitope recognition patterns of the T cell hybridomas. The 5/4E8 hybridoma showed greater flexibility in recognition, including a higher responsiveness to the corresponding self (mouse) aggrecan peptide, and produced more inflammatory cytokines (IFN-gamma and TNF-alpha), whereas hybridoma TA20 produced IL-5 in response to either human or mouse self peptide stimulation. These results demonstrate that, within the pool of immunodominant (foreign) peptide-activated lymphocytes, marked individual differences of degeneracy exist in T cell recognition, with possible implications to autopathogenic T cell functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号