首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2019年   1篇
  2018年   5篇
  2016年   1篇
  2011年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Bioprocess and Biosystems Engineering - Despite the advantages of concrete, it has a pore structure and is susceptible to cracking. The initiated cracks as well as pores and their connectivity...  相似文献   
2.
Applied Microbiology and Biotechnology - Concrete is arguably one of the most important and widely used materials in the world, responsible for the majority of the industrial revolution due to its...  相似文献   
3.
4.
l-Asparaginase is an anti-neoplastic drug used in lymphoblastic leukemia chemotherapy. Nowadays, this enzyme derived from bacterial sources, mostly l-asparaginase II from Escherichia coli and in lesser amount l-asparaginase of Erwinia sp. has medical utilization. The long-term usage of these agents leads to allergic reactions and new asparaginase with new immunological characteristics is required. Halophilic bacteria might contain l-asparaginase with novel immunological properties that can be used in hypersensitive patients. In this experiment, we have screened moderate Halophilic bacteria for l-asparaginase production ability and showed that Halophilic bacteria produce intra- and extracellular l-asparaginase. Bacillus sp. BCCS 034 was found to produce the highest l-asparaginase (1.64 IU/ml supernatant) extracellularly.  相似文献   
5.
Applied Microbiology and Biotechnology - Self-healing mechanisms are a promising solution to address the concrete cracking issue. Among the investigated self-healing strategies, the...  相似文献   
6.
Applied Microbiology and Biotechnology - Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In...  相似文献   
7.
Nanoscale iron particles have attracted substantial interest due to their unique physical and chemical properties. Over the years, various physical and chemical methods have been developed to synthesize these nanostructures which are usually expensive and potentially harmful to human health and the environment. Synthesis of iron nanoparticles (INPs) by using plant extract is now of great interest in order to develop a novel and sustainable approach toward green chemistry. In this method the chemical compounds and organic solvents are replaced with phytochemicals and aqueous matrixes, respectively. Similar to any chemical and biochemical reaction, factors such as reaction temperature, concentration of iron precursor, concentration of leaf extract, and reaction time have critical effects on the reaction yield. This review focuses on the novel approaches used for green synthesis of INPs by using plant resources. The currently available statistics including the factors affecting the synthesis process and potential applications of the fabricated nanoparticles are discussed. Recommendations are also given for areas of future research in order to improve the production process.  相似文献   
8.
Bacterial cell immobilization is a novel technique used in many areas of biosciences and biotechnology. Iron oxide nanoparticles have attracted much attention in bacterial cell immobilization due to their unique properties such as superparamagnetism, large surface area to volume ratio, biocompatibility and easy separation methodology. Adhesion is the basis behind many immobilization techniques and various types of interactions determine bacterial adhesion. Efficiency of bacterial cell immobilization using iron oxide nanoparticles (IONs) generally depends on the physicochemical properties of the IONs and surface properties of bacterial cells as well as environmental/culture conditions. Bacteria exhibit various metabolic responses upon interaction with IONs, and the potential applications of iron oxide nanoparticles in bacterial cell immobilization will be discussed in this work.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号