首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1981年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Abstract The origin of Diptera, and the homologies of the dipteran wing, are re-examined in the light of recent studies on the flight biomechanics and functional wing morphology of Diptera and of Panorpa. Significant Diptera apomorphies are identified, relevant fossils discussed, and a hypothetical wing ground-plan figured.
The arculus, the modified clavus and the anteroposterior asymmetry of the fly wing seem to be adaptations to a mode of flight in which instantaneous wing pitch and camber are controlled automatically, rather than by muscular action; probably in association with the development of asynchronous power musculature.
Tillyard's Cu2 (=CUP) is believed to be a secondary pseudo-vein, his 1A to be the true CuP and 2A to be 1A.
The late Permian fossil Permotipula Patricia is almost certainly a member of the Diptera stem-group, possibly even of the crown-group. The Mesozoic Laurentipteridae and the Permian Permotanyderidae are other possible, but not certain, stem-group members.  相似文献   
2.
Model of the mechanics of uprooting lead to the identificationof ‘optimal’ anchorage systems which can withstanda given upward force at a minimum construction cost. Such systemshave many downward-pointing fibrous roots which are strengthenedprogressively towards the base. A study of the anchorage systemof 7- and 21-d-old wheat (Triticum aestivum L.) plants showedthat the plants possessed five seminal roots, of which onlythree pointed vertically. Each root was well suited for anchorage,being convered in root hairs and strengthened progressivelytowards the base by lignification of the stele. Strength andstiffiness of roots but not their mass per unit length increasedwith age. There was little interaction between roots when plantswere uprooted; the three vertical roots broke while the twohorizontal ones pulled out, as occurred when roots were pulledout singly, Uprooting forces increased with age and the rootsystem could withstand uprooting forces greater than those requiredto pull out upper leaves, so reducing the chances of the plantbeing uprooted by a herbivore, By 3 weeks a stiff adventitiousroot system, which would later help prevent the wheat lodging,was developing.  相似文献   
3.
The root system of mature wheat Triticum aestivum Marts Doveis dominated by the 7 to 15 adventitious roots which emergefrom the perimeter of the stem base, pointing radially outwardsand downwards. The basal, coronal region of these roots is thickand unbranched, attached to a rhizosheath of earth by a densecovering of root hairs and stiffened in bending by lignificationof outer layers of the cortex. Root lodging of plants involves bending of the coronal rootsat their base and axial movement of leeward and windward rootsthrough the soil; their resistance to these motions providemoments resisting lodging. A model of anchorage was producedby summing the resistance of each root to both forms of motionto give two anchorage components. The model was tested in aseries of mechanical experiments in which simulated lodgingwas followed by loading of individual roots; results supportedthe anchorage model and suggested that in the experimental conditionsthe two components of anchorage were approximately equal inmagnitude. The stem was about 30% stronger than the anchoragesystem. The coronal anchorage roots made up 4.4% of total dry mass;it is suggested that anchorage could be improved either by increasinginvestment in this region or by altering root orientation. Sequentialdevelopment of seminal and adventitious root systems is relatedto the changes in anchorage requirement with age.  相似文献   
4.
The mechanical development of the anchorage system of the taprooted tropical speciesMallotus wrayiKing (Euphorbiaceae) wasinvestigated by pulling over and examining trees with a diameterat breast height (dbh) of 4.2 cm to 14.3 cm. The mode of mechanicalfailure depended upon the size of the tree: thicker trees (dbhapprox.9 cm) failed in the ground with their tap roots pushing intothe soil on the winchward side; in smaller trees (dbhapprox.7 cm) the trunk snapped before anchorage failure; and in verysmall trees (of dbh<6 cm) neither type of failure occurredand the trees returned to their original upright position undamagedafter the test. The anchorage strength of the trees was correlatedwith the second power of trunk diameter rather than with thethird power that theory suggests is optimal because tap rootsdid not show an isometric increase in length or diameter. Thereforeas trees grow larger the ‘factor of safety’ againstanchorage failure falls, making them prone to fail in theirroots. These results suggest that only relatively small treespecies can rely solely on the tap root to prevent uprooting.It may be for this reason that most larger trees develop thicklateral roots.Copyright 1998 Annals of Botany Company Anchorage, tap roots, scaling,Mallotus wrayi, isometric growth, functional development, windthrow, root systems.  相似文献   
5.
Plants of two contrasting species of herbaceous annuals, thedicot sunflower (Helianthus annuusL.) and the monocot maize(Zea maysL.), grown in the glasshouse were subjected to regularunidirectional stem flexure. Differences in morphology and mechanicalproperties of roots and shoots were then investigated. Rootsystems were divided into quadrants around the axis of stimulationand differences in root morphology and mechanics between thezones were investigated. There were considerable differencesbetween roots in the leeward and windward zones compared withroots perpendicular to the axis of stimulation. First-orderlateral roots in both species were thicker, more rigid and morenumerous. These results suggest that plant roots respond locallyto mechanical stimulation. There were, however, also differencesin the responses of the two species. In sunflower, the tap rootand stem base became elliptical in cross section with the majoraxis lying in the plane of stimulation. The lateral roots offlexed sunflowers in both the leeward and windward zones showedsimilar growth responses: roots were thicker, more numerousand weighed more than those in the perpendicular zones. However,only leeward roots showed significant differences in their mechanicalproperties; roots were more rigid, stronger and stiffer. Incontrast, the leeward roots of maize were thicker and more numerous,with a greater biomass than the windward roots. However, onlyroots in the windward zone were stiffer than those in the perpendicularzone. These differences between sunflower and maize are relatedto their contrasting anchorage mechanics.Copyright 1998 Annalsof Botany Company Anchorage, biomechanics, adaptive growth, roots, thigmomorphogenesis,Helianthus annuusL.,Zea maysL.  相似文献   
6.
The anchorage of winter wheat, Triticum aestivum L., is providedby a cone of rigid coronal roots which emerge from around thestem base. During root lodging this cone rotates at its windwardedge below the soil surface, the soil inside the cone movingas a block and compressing the soil beneath. A theoretical modelof anchorage suggested that lodging resistance should be dependenton the diameter of the root-soil cone, coronal root bendingstrength and soil shear strength. We tested the predictions of the anchorage model by carryingout two series of experiments. In the first, varieties of contrastinglodging resistances were artificially lodged. The moment requiredto rotate plants into the soil, the diameter of the root-soilcone, and the bending strength of the coronal roots were recorded.The lodging moment was correlated with the size of the soilcone, as predicted. Generally, differences in anchorage strengthbetween varieties were due to differences in root-soil conediameter, although coronal root strength was also important. A second series of tests was carried out using model plantsanchored by plastic discs. The behaviour of the models duringartificial lodging supported the anchorage model; the forceresisting lodging was similar to that of plants with root-soilcones of the same size and the resisting force was dependenton the soil strength. These results suggest that root lodging resistance might beimproved by increasing both the angle of spread and the bendingstrength of the coronal roots. Key words: Anchorage, root-soil cone, coronal roots, lodging, wheat  相似文献   
7.
The effects of soil bulk density and hence strength on two contrastingspecies of herbaceous annuals, the dicot sunflower (HelianthusannuusL.) and the monocot maize (Zea maysL.), were investigatedby comparing the morphology and mechanics of field-grown plantsin soil with a low and high bulk density. Soil with a low bulkdensity had a significantly lower penetration resistance (118±4.4kPa) than the high bulk density soil (325±12.2 kPa;P<0.0001).Soil strength affected shoot and root systems of both speciesbut had no significant effect on shoot height. In both speciesroots were thicker closer to the stem base in strong soil comparedto those in weaker soil. Sunflower tap-roots growing in strongsoil tapered more rapidly than those in weak soil. Only in maize,however, were roots growing in weak soil stiffer than thosein strong soil. Despite only small absolute differences in thepenetration resistance of the soil both species growing in strongsoil had greater anchorage strength than those in weak soil.As a consequence more plants in weak soil lodged compared withthose growing in strong soil. This study shows that plants can,to a small extent, respond to changes in soil strength, butthat changes do not appear to compensate fully for alterationsin soil conditions. Furthermore it may be possible, by manipulatingsoil strength, to control lodging.Copyright 1999 Annals of BotanyCompany Roots, compaction, soil strength, anchorage mechanics, bulk density, thigmomorphogenesis, lodging,Helianthus annuusL.,Zea maysL.  相似文献   
8.
The Anchorage Mechanics of Maize, Zea mays   总被引:2,自引:0,他引:2  
The anchorage system of mature maize Zea mays was investigatedby combining morphological and anatomical study of the rootsystem with mechanical tests on roots and with studies in whichplants were pulled over. The root system is dominated by 20–30adventitious roots which emerge in rings from the stem basepointing radially downwards and outwards, approximately 30°from the vertical. Roots are strengthened near their base bya heavily lignified exodermis which makes them rigid in bending;distally, strength and rigidity both decrease because rootsbecome thinner and less lignified. When plants were pulled over,a maximum anchorage moment of 5–20 Nm was mobilized atangles of 8–10°, larger plants having stronger anchorage.Movement was initially centred on the leeward side of the stem,anchorage being due to the resistance of both windward and leewardroots to axial motion through the soil and to bending. At displacementsover 10°, however, leeward roots buckled under combinedbending and compression and the centre of rotation shifted tothe windward perimeter of the root system; subsequent movementof the cone of roots and soil was resisted only by the bearingstrength of the soil beneath it. The differences between anchorage failure in balsam and sunflowersand that in maize probably results from the lower angular spreadand the weakness in compression of the maize roots which preventsthe leeward side of the root system from bearing large downwardloads. The system behaves more like that of wheat; these resultssuggest that the lodging resistance of both plants may be improvedby increasing the bending strength and angle of spread of theadventitious roots. Key words: Zea mays, roots, anchorage  相似文献   
9.
The effect of wind sway on the mechanical characteristics ofthe anchorage roots and the stem was investigated in maturewinter wheat (Triticum aestivumL., cv. Hereward). Wheat plantswere field-grown, either supported by a frame, which preventedwind sway, or unsupported (free-standing) and the morphologyand mechanical properties of the stems and the anchorage, ‘coronal’, roots were measured. Wind sway had little influence on either the stem height orear weight of the plants but did affect the mechanical propertiesof the stem. Stems of supported plants were weaker and moreflexible than the stems of free-standing plants. There werealso differences in the anchorage systems between the treatments:supported plants had just under half as many ‘coronal’ anchorage roots as the free-standing plants. This reducedthe anchorage strength of supported plants by a third. These differences in mechanical structure meant that the free-standingplants were more resistant to stem buckling and more resistantto anchorage failure. However, considering the difference inthe need for mechanical strength in plants from the two regimes,these differences were small. This suggests that wheat has inherentmechanical integrity and, as a monocotyledon with no secondarythickening, it differs little structurally between environments. Triticum aestivumL.; thigmomorphogenesis; anchorage; safety factor; mechanical stimulation  相似文献   
10.
Wings of representative species of the order Diptera were compared with a simple model structure in which corrugated spars diverge from a V-shaped leading edge spar. Both develop torsion and camber when subjected to aerodynamic loads, forming a propeller shape. Both the leading edge and the cubitus of flies' wings twist basally, allowing camber to be set up as the media hinges up or down at the arculus. Three different wing types were identified: stiff wings possessing two or three main spars; and wings capable of ventral flexion. In wings possessing only two spars, found mainly in the Nematocera, control of camber is achieved largely by the use of cross veins. Wing control and flight are generally imprecise. The third spar, found in most Brachycera, in the Syrphidae and in the Conopidae controls camber and helps support a broader wing. Finer control of camber is exerted by marginal cross veins, and these insects generally have precise, darting flight. Ventral flexion mechanisms are found in the Simuliidae, the Stratiomyiidae, and widely in the Schizophora. Control of ventral flexion, which occurs at the end of the downstroke, allows fast, unpredictable manoeuvres. Functional similarities indicate either phylogenetic relationship or convergence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号