首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   10篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1970年   1篇
  1930年   1篇
  1929年   1篇
  1926年   1篇
  1924年   2篇
  1921年   1篇
排序方式: 共有68条查询结果,搜索用时 375 毫秒
1.
2.
Fremont cottonwood seedlings are vulnerable to water stress from rapid water‐table decline during river recession in spring. Water stress is usually cited as the reason for reduced establishment, but interactions of water stress with microclimate extremes are more likely the causes of mortality. We assessed photosynthetic responses of Fremont cottonwood seedlings to water, light and heat stresses, which commonly co‐occur in habitats where seedlings establish. Under moderate temperature and light conditions, water stress did not affect photosynthetic function. However, stomatal closure during water stress predisposed Fremont cottonwood leaves to light and heat stress, resulting in greatly reduced photosynthesis beginning at 31 °C versus at 41 °C for well‐watered plants. Ontogenetic shifts in leaf orientation from horizontal to vertical, which occur as seedlings mature, reduce heat and light stress, especially during water stress. When compared with naturally occurring microclimate extremes, seedling stress responses suggest that reduced assimilation and photoprotection are common for Fremont cottonwood seedlings on exposed point bars where they establish. These reductions in photosynthesis likely have negative impacts on growth and may predispose young (<90‐day‐old) seedlings to early mortality during rapid water‐table declines. Interactions with heat and light stress are more important in these effects than water stress alone.  相似文献   
3.
1. Invasions of zebra and quagga mussels have had long‐term, large‐scale impacts on lake ecosystems in the USA as characterised by high abundance, broad‐scale spread and effective adaption to new environmental conditions. Due to their high filtering capacity, decreases in chlorophyll a (Chl) and total phosphorus (TP) concentrations have been reported in many affected lakes. 2. In 25 US lakes, we analysed the effects of dreissenid invasions on changes in Chl and TP concentrations, measured as the probability of a concentration decrease in the post‐invasion period and changes in Chl–TP relationships using Bayesian hierarchical regressions. We also examined whether changes in Chl and TP concentrations and in the Chl–TP relationship differed according to lake hydromorphology, such as mean depth or mixing status (mixed versus stratified lakes). 3. Our results showed that dreissenid invasions were often, but not always, associated with subsequent TP and Chl declines. Dreissenid effects on Chl and TP may be influenced by lake thermal structure. Decreases in Chl and TP were consistently found in mixed lakes where benthic–pelagic coupling is tight, while the effects were less predictable in stratified lakes. Within stratified lakes, Chl and TP reductions were more clearly discernible in deeper lakes with long water residence times. 4. Regression results demonstrated that a joint increase in slope and decrease in intercept and a tighter correlation of the Chl–TP relationship were likely to occur in dreissenid‐invaded lakes; this does not support the idea of a shift from bottom‐up to top‐down control of primary production. These results have important implications for management, suggesting that a relaxation of TP standards would be unwarranted. 5. Across lakes, the slope of the Chl–TP relationship for mixed lakes was substantially higher than that for stratified lakes before mussel invasion, indicating an important role of light in limiting primary production. The slope differences between mixed and stratified lakes decreased in the post‐invasion period, possibly because mussel filtration results in a relaxation of light limitation that is more pronounced in deeper, stratified lakes.  相似文献   
4.
1. Density‐dependent phase polyphenism occurs when changes in density during the juvenile stages result in a developmental shift from one phenotype to another. Density‐dependent phase polyphenism is common among locusts (Orthoptera: Acrididae). 2. Previously, we demonstrated a longitudinal geographic cline in adult body size (western populations = small adults; eastern populations = large adults) in the eastern lubber grasshopper (Romalea microptera) in south Florida. As lubbers are confamilial with locusts, we hypothesised that the longitudinal size cline was partly due to density‐dependent phase polyphenism. 3. We tested the effect of density, population, and density×population interaction on life‐history traits (pronotum length, mass, cumulative development time, growth rate) of, and proportion surviving to, each of the five instars and the adult stage in a 2 × 3 factorial laboratory experiment with two lubber populations, each reared from hatchling to adult at three different densities. 4. The effect of density on life history and survival was independent of the effects of population on life history and survival. Higher densities led to larger adult sizes (pronotum, mass) and lower survivorship. The western population had smaller adult masses, fewer cumulative days to the adult stage, and higher survivorship than the eastern population. 5. Our data suggest that lubber grasshoppers exhibit density‐dependent phase polyphenism initiated by the physical presence of conspecifics. However, the plastic response of adult size to density observed in the laboratory is not consistent with the relationship between phenotypes and adult density in the field. Genetic differences between populations observed in the laboratory could contribute to size and life‐history differences among lubber populations in the field.  相似文献   
5.
Eight microsatellite loci were isolated from the lance‐tailed manakin (Chiroxiphia lanceolata), a polygynous lek‐breeding bird from Central America. Five of these loci were polymorphic (two to seven alleles per locus), with observed levels of heterozygosity ranging from 0.100 to 0.860 (n = 50 individuals). These variable loci provide a valuable tool for assessing patterns of parentage and relatedness within lance‐tailed manakin social groups.  相似文献   
6.
7.
High pressure liquid chromatography with electrochemical detection (HPLC-ED) was employed in conjugation with a sensitive and specific salicylate hydroxylation assay to evaluate the immediate effects of hydroxyl radical (·OH) attack on four catechol intermediates of eumelanin, dopamine (3,4-dihydroxyphenylethylamine), its precursor dopa (3,4-dihydroxyphenylalanine), and their respective neurotoxic trihydroxyphenyl derivatives, 6-hydroxydopamine (2,4,5-trihydroxyphenylethylamine,6-OHDA) and 6-hydroxydopa(2,4,5-trihydroxyphenylalanine, TOPA). Semiquinone and quinone species were identified as the initial products of the oxidation of these four catechol substrates. The enhanced oxidations of the catechols when exposed to ·OH attack was accompanied by marked decreases in the level of each semiquinone species. Quinone levels were elevated in reactions involving ·OH attack on dopamine and 6-OHDA, but absent in reactions involving radical attack on dopa or TOPA, suggesting that dopaquinone (DOQ) and TOPA p-quinone (TOPA p-Q) are oxidized more rapidly by‘OH than are the quinones of dopamine and 6-OHDA. The formation of 6-OHDA p-quinone (6-OHDA p-Q) in incubations involving DA and ·OH suggest that the ·OH-mediated hydroxylation of DA may be a mechanism for generating this potentially cytotoxic trihydroxyphenyl. The results of this study demonstrate for the first time that semiquinone and quinone intermediates of eumelanin are the initial products derived from the ·OH-mediated oxidations of dopa, DA, TOPA, and 6-OHDA. These observations suggest that if ·OH is generated beyond the capabilities of cytoprotective mechanisms, the radical can rapidly oxidize catechol precursors, augment melanogenesis, and generate additional cytotoxic quinoid intermediates of eumelanin.  相似文献   
8.
The high mountain plant species Ranunculus glacialis has a low antioxidative scavenging capacity and a low activity of thermal dissipation of excess light energy despite its growth under conditions of frequent light and cold stress. In order to examine whether this species is protected from over-reduction by matching photosystem II (PSII) electron transport (ETR) and carbon assimilation, both were analysed simultaneously at various temperatures and light intensities using infrared gas absorption coupled with chlorophyll fluorescence. ETR exceeded electron consumption by carbon assimilation at higher light intensities and at all temperatures tested, necessitating alternative electron sinks. As photorespiration might consume the majority of excess electrons, photorespiration was inhibited by either high internal leaf CO2 molar ratio (Ci), low oxygen partial pressure (0.5% oxygen), or both. At 0.5% oxygen ETR was significantly lower than at 21% oxygen. At 21% oxygen, however, ETR still exceeded carbon assimilation at high Ci, suggesting that excess electrons are transferred to another oxygen consuming reaction when photorespiration is blocked. Nevertheless, photorespiration does contribute to electron consumption. While the activity of the water –water cycle to electron consumption is not known in leaves of R. glacialis, indirect evidence such as the high sensitivity to oxidative stress and the low initial NADP-malate dehydrogenase (NADP-MDH) activity suggests only a minor contribution as an alternative electron sink. Alternatively, the plastid terminal oxidase (PTOX) may transfer excess electrons to oxygen. This enzyme is highly abundant in R. glacialis leaves and exceeds the PTOX content of every other plant species so far examined, including those of transgenic tomato leaves overexpressing the PTOX protein. Finally, PTOX contents strongly declined during deacclimation of R. glacialis plants, suggesting their important role in photoprotection. Ranunculus glacialis is the first reported plant species with such a high PTOX protein content.  相似文献   
9.
10.
Adult parasitoids Lysiphlebus testaceipes Cresson (Hymenoptera: Aphidiidae) lose locomotory function and enter chill coma at significantly lower temperatures (?0.1 and ?8.0 °C, respectively) than their second‐instar hosts, the black bean aphid Aphis fabae Scop. (Hemiptera: Aphididae) (5.6 and 2.3 °C, respectively). Parasitoids are also more heat tolerant, stop walking at 41.4 °C, with heat coma at 44.1 °C, than the aphid (39.1 and 43.0 °C, respectively). Furthermore, across a range of temperatures (0–20 °C), L. testaceipes has considerably faster walking speeds than A. fabae. These data are discussed in relation to the climatic conditions under which L. testaceipes would be an effective control agent, and the likelihood of establishment and spread in northern European climates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号