首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2007年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1978年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有8条查询结果,搜索用时 343 毫秒
1
1.
2.
The long-term effects of different nitrogen sources on the endogenous IAA and cytokinin levels in two bromeliad species were investigated. In nature, Vriesea philippocoburgii is a tank-forming epiphytic bromeliad which uses the tank water reservoir as a substitute for soil, whereas Tillandsia pohliana is a tankless atmospheric epiphytic species. A culture was established from seeds germinated in aseptic condictions, and the plantlets were grown for 6 months in a modified Knudson medium to which was added 8 mol m−3 of nitrogen in the form of NO3, NH4+ or urea. The hormonal contents of the bromeliad shoots were determined by means of high-performance liquid chromatography (HPLC), coupled to an enzyme-linked immunosorbent assay (ELISA) for indole-3-acetic acid (IAA), isopentenyladenine (iP), isopentenyladenosine ([9R]iP), zeatin (Z) and zeatin riboside ([9R]Z). Nitrogen supplied in the form of urea gave the highest values of fresh and dry weights for both species, and this was positively correlated to IAA levels. The cytokinin patterns showed that isopentenyladenosine was the predominant form for both species in all samples. However, urea induced the highest level of this riboside form and also the highest level of total cytokinins for V. philippocoburgii, while NH4+ had the same effect on the atmospheric species. These results are discussed in terms of the different growth habits of these two species in nature. It is suggested that urea may be an important source of nitrogen often found inside the tank of V. philippocoburgii. NO3 treatment increased the IAA/Cks balance, mainly for V. philippocoburgii, while urea and NH4+ shifted this ratio in favour of cytokinins, thus apparently inhibiting root development in both species.  相似文献   
3.
Norway spruce ( Picea abies (L.) Karst.) seedlings were inoculated with the ectomycorrhizal fungus Laccaria bicolor ((Marie) Orton), strain S238 N, in axenic conditions. The presence of the fungus slowed tap–root elongation by 26% during the first 15 d after inoculation and then stimulated it by 136%. In addition, it multiplied in vitro lateral root formation by 4.3, the epicotyl growth of the seedlings by 8.4 and the number of needles by 2. These effects were maintained when the fungus was separated from the roots by a cellophane membrane preventing symbiosis establishment, thus suggesting that the fungus acted by non-nutritional effects. We tested the hypothesis that IAA produced by L. bicolor S238 N would be responsible for the stimulation of fungal induced rhizogenesis. We showed in previous work that L. bicolor S238 N can synthesize IAA in pure culture. Exogenous IAA supplies (100 and 500 μ m ) reproduced the stimulating effect of the fungus on root branching but inhibited root elongation. The presence of 2,3,5-triiodobenzoic acid (TIBA) in the culture medium significantly depressed lateral root formation of inoculated seedlings. As TIBA had no significant effect on IAA released in the medium by L. bicolor S238 N, but counteracted the stimulation of lateral rhizogenesis induced by an exogenous supply of IAA, we suggest that TIBA inhibited the transport of fungal IAA in the root. Furthermore TIBA blocked the colonization of the main root cortex by L. bicolor S238 N and the formation of the Hartig net. These results specified the role of fungal IAA in the stimulation of lateral rhizogenesis and in ectomycorrhizal symbiosis establishment.  相似文献   
4.
5.
6.
Endogenous levels of indole-3-acetic acid (I AA) and cytokininswere measured in the two types of callus of oil palm (ElaeisguineensisJacq.) by an HPLC-ELISA methodology. The Nodular Compact Callus(NCC) is commonly used to establish stableembryoid strains ensuringclonal fidelity(  相似文献   
7.
In the next few decades, climate of the Amazon basin is expected to change, as a result of deforestation and rising temperatures, which may lead to feedback mechanisms in carbon (C) cycling that are presently unknown. Here, we report how a throughfall exclusion (TFE) experiment affected soil carbon dioxide (CO2) production in a deeply weathered sandy Oxisol of Caxiuanã (Eastern Amazon). Over the course of 2 years, we measured soil CO2 efflux and soil CO2 concentrations, soil temperature and moisture in pits down to 3 m depth. Over a period of 2 years, TFE reduced on average soil CO2 efflux from 4.3±0.1 μmol CO2 m−2 s−1 (control) to 3.2±0.1 μmol CO2 m−2 s−1 (TFE). The contribution of the subsoil (below 0.5 m depth) to the total soil CO2 production was higher in the TFE plot (28%) compared with the control plot (17%), and it did not differ between years. We distinguished three phases of drying after the TFE was started. The first phase was characterized by a translocation of water uptake (and accompanying root activity) to deeper layers and not enough water stress to affect microbial activity and/or total root respiration. During the second phase a reduction in total soil CO2 efflux in the TFE plot was related to a reduction of soil and litter decomposers activity. The third phase of drying, characterized by a continuing decrease in soil CO2 production was dominated by a water stress‐induced decrease in total root respiration. Our results contrast to results of a drought experiment on clay Oxisols, which may be related to differences in soil water retention characteristics and depth of rooting zone. These results show that large differences exist in drought sensitivity among Amazonian forest ecosystems, which primarily seem to be affected by the combined effects of texture (affecting water holding capacity) and depth of rooting zone.  相似文献   
8.
Interaction of photoperiodism and zeatin, sucrose and water effects on the flowering of Chenopodium polyspermum Root removal in Chenopodium polyspermum, a quatitative short-day plant, enhances flowering under non-inductive conditions. Presence of roots may be mimicked by zeatin applications on buds. Induction of flowering by short days may be counteracted by applications of zeatin, and appearance of flowers depends on the balance between number of inductive short days and zeatin quantity applied. Sucrose added in the culture medium or applied on buds acts as zeatin. Applications of water on buds may also delay flowering. These results show the plurifactorial regulation of the floral development of this plant. The relations between the non-specificity of the induction and the specificity of the morphogenetic response are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号