首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   296篇
  免费   11篇
  国内免费   1篇
  2024年   1篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   13篇
  2014年   7篇
  2013年   6篇
  2012年   31篇
  2011年   18篇
  2010年   8篇
  2009年   13篇
  2008年   26篇
  2007年   28篇
  2006年   21篇
  2005年   22篇
  2004年   13篇
  2003年   13篇
  2002年   19篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   2篇
  1971年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有308条查询结果,搜索用时 156 毫秒
1.
The activity of eukaryotic DNA methyltransferase diminishes with time when the enzyme is incubated with high concentrations (200–300 μg/ml) of unmethylated double-stranded Micrococcus luteus DNA. Under similar conditions, single-stranded DNA induces only a limited decrease of enzyme activity. The inactivation process is apparently due to a slowly progressive interaction of the enzyme with double-stranded DNA that is independent of the presence of S-adenosyl-l-methionine. The inhibited enzyme cannot be reactivated either by high salt dissociation of the DNA-enzyme complex or by extensive digestion of the DNA. Among synthetic polydeoxyribonucleotides both poly(dG-dC) · poly(dG-dC) and poly(dA-dT) · poly(dA-dT), but not poly(dI-dC) · poly(dI-dC), cause inactivation of DNA methyltransferase. This inactivation process may be of interest in regulating the ‘de novo’ activity of the enzyme.  相似文献   
2.
The activity of eukaryotic DNA methyltransferase diminishes with time when the enzyme is incubated with high concentrations (200-300 micrograms/ml) of unmethylated double-stranded Micrococcus luteus DNA. Under similar conditions, single-stranded DNA induces only a limited decrease of enzyme activity. The inactivation process is apparently due to a slowly progressive interaction of the enzyme with double-stranded DNA that is independent of the presence of S-adenosyl-L-methionine. The inhibited enzyme cannot be reactivated either by high salt dissociation of the DNA-enzyme complex or by extensive digestion of the DNA. Among synthetic polydeoxyribonucleotides both poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT), but not poly(dI-dC).poly(dI-dC), cause inactivation of DNA methyltransferase. This inactivation process may be of interest in regulating the 'de novo' activity of the enzyme.  相似文献   
3.
4.
Intracellular distribution of DNA methyltransferase during the cell cycle   总被引:2,自引:0,他引:2  
The intracellular distribution of DNA methyltransferase has been analyzed in synchronously proliferating human cells. The localization of DNA methyltransferase was determined immunocytochemically using monoclonal antibodies directed against this enzyme. DNA methyltransferase was found to accumulate predominantly in nuclei with weak cytoplasmic staining. The DNA methyltransferase antigen was absent in early G1 phase, appeared in late G1 prior to the onset of DNA synthesis and persisted throughout S and G2 phases of the cell cycle. Mitotic cells showed a particularly strong staining intensity. These results show that DNA methyltransferase levels fluctuate during the cell cycle. This has possible implications on the stability of the DNA methylation pattern.  相似文献   
5.
Cholinesterase activity in single nerve cell bodies isolated from the locus ceruleus and nucleus of the facial nerve of the rat was analyzed by the microgasometric method. Acetylcholinesterase activity is about the same in both types of cells. Nonspecific cholinesterase is present in noradrenergic cells of the locus ceruleus but not in the cholinergic cells of the nucleus of the facial nerve. The total activity of cholinesterases and the activity of acetylcholinesterase in nerve cell bodies isolated from the locus ceruleus remains practically unchanged from the tenth postnatal day until the age of 24 months. Depletion of noradrenaline by a high dose of reserpine does not influence the total activity of cholinesterases in nerve cell bodies of locus ceruleus.  相似文献   
6.
7.
The incorporation of [14C]deoxycytidine, [3H]deoxyuridine, and [3H]thymidine, respectively into pyrimidine bases of DNA has been measured in rapidly proliferating P815 mouse mastocytoma cells in the presence of hydroxyurea. The incorporation of [14C]deoxycytidine-derived radioactivity into DNA cytosines is increased when compared to the incorporation into DNA thymines. The [3H]deoxyuridine-derived radioactivity is incorporated solely into DNA thymines and this incorporation is inhibited by hydroxyurea in a dose-dependent manner. This suggests an inhibitory effect of hydroxyurea on the thymidylate synthase which was proved in experiments in which the conversion of deoxyuridine monophosphate into deoxythymidine monophosphate catalysed by a crude enzyme preparation from P815 cells was inhibited in the presence of hydroxyurea. Enzymatic DNA methylation as measured by the conversion of incorporated [14C]deoxycytidine into 5-methylcytosines was not affected by hydroxyurea.  相似文献   
8.
Photosynthesis Research - In this work, we reconstructed the absorption spectrum of different Synechocystis sp. PCC 6803 optical strains by summing the computed signature of all pigments present in...  相似文献   
9.

Purpose

Dendritic cells (DCs) can induce strong tumor-specific T-cell immune responses. Constitutive upregulation of the mitogen-activated protein kinase (MAPK) pathway by a BRAFV600 mutation, which is present in about 50 % of metastatic melanomas, may be linked to compromised function of DCs in the tumor microenvironment. Targeting both MEK and BRAF has shown efficacy in BRAFV600 mutant melanoma.

Methods

We co-cultured monocyte-derived human DCs with melanoma cell lines pretreated with the MEK inhibitor U0126 or the BRAF inhibitor vemurafenib. Cytokine production (IL-12 and TNF-α) and surface marker expression (CD80, CD83, and CD86) in DCs matured with the Toll-like receptor 3/Melanoma Differentiation-Associated protein 5 agonist polyI:C was examined. Additionally, DC function, viability, and T-cell priming capacity were assessed upon direct exposure to U0126 and vemurafenib.

Results

Cytokine production and co-stimulation marker expression were suppressed in polyI:C-matured DCs exposed to melanoma cells in co-cultures. This suppression was reversed by MAPK blockade with U0126 and/or vemurafenib only in melanoma cell lines carrying a BRAFV600E mutation. Furthermore, when testing the effect of U0126 directly on DCs, marked inhibition of function, viability, and DC priming capacity was observed. In contrast, vemurafenib had no effect on DC function across a wide range of dose concentrations.

Conclusions

BRAFV600E mutant melanoma cells modulate DC through the MAPK pathway as its blockade can reverse suppression of DC function. MEK inhibition negatively impacts DC function and viability if applied directly. In contrast, vemurafenib does not have detrimental effects on important functions of DCs and may therefore be a superior candidate for combination immunotherapy approaches in melanoma patients.  相似文献   
10.
Computer simulation offers unique possibilities for investigating molecular-level phenomena difficult to probe experimentally. Drawing from a wealth of studies concerning protein folding, computational studies of protein aggregation are emerging. These studies have been successful in capturing aspects of aggregation known from experiment and are being used to refine experimental methods aimed at abating aggregation. Here we review molecular-simulation studies of protein aggregation conducted in our laboratory. Specific attention is devoted to issues with implications for biotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号