首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2018年   1篇
  2013年   3篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Glycosaminoglycans (GAGs) like chondroitin sulfate (CS) and heparan sulfate (HS) are synthesized on the tetrasaccharide linkage region, GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser, of proteoglycans. The Xyl can be modified by 2-O-phosphate in both CS and HS, whereas the Gal residues can be sulfated at C-4 and/or C-6 in CS but not in HS. To study the roles of these modifications, monoclonal antibodies were developed against linkage glycopeptides of shark cartilage CS proteoglycans, and one was characterized in detail. This antibody bound hexa- and pentasaccharide-peptides more strongly than unsaturated tetrasaccharide-peptides with the unnatural fourth sugar residue (unsaturated hexuronic acid), suggesting the importance of the fifth and/or fourth saccharide residue GalNAc-5 and/or GlcA-4. Its reactivity was not affected by treatment with chondro-4-sulfatase or alkaline phosphatase, suggesting that 4-O-sulfate on the Gal residues and 2-O-phosphate on the Xyl residue were not recognized. Treatment with weak alkali to cleave the Xyl-Ser linkage completely abolished the binding activity, suggesting the importance of the peptide moiety of the hexasaccharide-peptide for the binding. Based on the amino acid composition and matrix-assisted laser desorption ionization time-of-flight mass spectrometry analyses, it was revealed that the peptide moiety is composed of four amino acids, Ser, Pro, Gly, and Glu. Furthermore, the antibody stained wild-type CHO cells significantly, but much weakly mutant cells deficient in xylosyl- or galactosyltransferase-I required for the biosynthesis of the linkage region. These results suggest that the antibody recognizes the structure GalNAc(±6-O-sulfate)-GlcA-Gal-Gal-Xyl-Ser-(Pro, Gly, Glu). The antibody will be a useful tool for investigating the significance of the linkage region in the biosynthesis and/or intracellular transport of different GAG chains especially since such tools to study the linkage region are lacking.  相似文献   
2.
Chondroitin sulfate K (CS-K) from king crab cartilage rich in rare 3-O-sulfated glucuronic acid (GlcUA(3S)) displayed neuritogenic activity and affinity toward various growth factors like CS-E from squid cartilage. CS-K-mediated neuritogenesis of mouse hippocampal neurons in culture was abolished by digestion with chondroitinase (CSase) ABC, indicating the possible involvement of GlcUA(3S). However, identification of GlcUA(3S) in CS chains by conventional high performance liquid chromatography has been hampered by its CSase ABC-mediated degradation. To investigate the degradation process, an authentic CS-E tetrasaccharide, Delta4,5HexUA-GalNAc(4S)-GlcUA(3S)-GalNAc(4S), was digested with CSase ABC, and the end product was identified as GalNAc(4S) by electrospray ionization mass spectrometry (ESI-MS). Putative GalNAc(6S) and GalNAc(4S,6S), derived presumably from GlcUA(3S)-GalNAc(6S) and GlcUA(3S)-GalNAc(4S,6S), respectively, were also detected by ESI-MS in the CSase ABC digest of a CS-E oligosaccharide fraction resistant to CSases AC-I and AC-II. Intermediates during the CSase ABC-mediated degradation of Delta4,5HexUA(3S)-GalNAc(4S) to GalNAc(4S) were identified through ESI-MS of a partial CSase ABC digest of a CS-K tetrasaccharide, GlcUA(3S)-GalNAc(4S)-GlcUA(3S)-GalNAc(4S), and the conceivable mechanism behind the degradation of the GlcUA(3S) moiety was elucidated. Although a fucose branch was also identified in CS-K, defucosylated CS-K exhibited greater neuritogenic activity than the native CS-K, excluding the possibility of the involvement of fucose in the activity. Rather, (3S)-containing disaccharides are likely involved. These findings will enable us to detect GlcUA(3S)-containing disaccharides in CS chains to better understand CS-mediated biological processes.  相似文献   
3.
4.

Background

Chondroitin sulfate (CS) is a ubiquitous component of the cell surface and extracellular matrix and its sugar backbone consists of repeating disaccharide units: D-glucuronic acid (GlcUA)β1-3N-acetyl-D-galactosamine (GalNAc). Although CS participates in diverse biological processes such as growth factor signaling and the nervous system's development, the mechanism underlying the functions is not well understood.

Methods

CS was isolated from ray fish cartilage, an industrial waste, and its structure and neurite outgrowth-promoting (NOP) activity were analyzed to investigate a potential application to nerve regeneration.

Results

The major disaccharide unit in the CS preparation was GlcUA-GalNAc(6-O-sulfate) (61.9%). Minor proportions of GlcUA-GalNAc(4-O-sulfate) (27.0%), GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate) (8.5%), and GlcUA-GalNAc (2.7%) were also detected. The preparation showed NOP activity in vitro, and this activity was suppressed by antibodies against hepatocyte growth factor (HGF) and its receptor c-Met, suggesting the involvement of the HGF signaling pathway in the expression of the in vitro NOP activity of the CS preparation. The specific binding of HGF to the CS preparation was also demonstrated by surface plasmon resonance spectroscopy.

Conclusions and general significance

The NOP activity of CS from ray cartilage was demonstrated to be expressed through the HGF signaling pathway, suggesting that ray cartilage CS may be useful for studying the cooperative function of CS and HGF.  相似文献   
5.
A gene encoding a cellobiohydrolase (CBHI) was isolated from Fusicoccum sp. (BCC4124), an endophytic fungus belongs in phylum Ascomycota, using 5' and 3' rapid amplification of cDNA end (RACE) technique. This CBHI gene contains 1395 nucleotides and encodes a 465-amino acid protein with a molecular weight of approximately 50 kDa. The deduced amino acid sequence showed significant similarity to those of other fungal CBHI belonging to family 7 of glycosyl hydrolase. Interestingly, the result from the amino acid alignment revealed that this CBHI does not contain the cellulose binding domain nor the linker region. The CBHI gene was successfully expressed in Pichia pastoris KM71. The purified recombinant CBHI has ability to hydrolyze Avicel, filter paper and 4-methylumbelliferyl beta-d-cellobioside (MUC) but not carboxymethylcellulose (CMC). It showed an optimal working condition at 40 degrees C, pH 5 with K(m) and V(max) toward MUC of 0.57 mM and 3.086 nmol/min/mg protein, respectively. The purified enzyme was stable at pH range of 3-11. The enzyme retained approximately 50% of its maximal activity after incubating at 70-90 degrees C for 30 min. Due to its stability through wide range of pH, and moderately stable at high temperature, this enzyme has potential in various biotechnology applications.  相似文献   
6.
Xylanases are one of the industrially valuable enzymes. Using RT-PCR and 5'- and 3'-RACE procedures, we have cloned a full-length xylanase encoding gene from a filamentous fungus, Cryptovalsa mangrovei (BCC7197) from Phuket, Thailand. The results showed that BCC7197 xylanase cDNA has an open reading frame of 978 bp encoding 325 amino acid residues. Further sequence analysis revealed that this xylanase gene is belonged to the glycosyl hydrolase family 10 and has approximately 50-60% amino acid sequence similarity to other fungal xylanases. Furthermore, expression of BCC7197 xylanase in the Pichia pastoris was also performed. The results demonstrated that the active BCC7197 xylanase protein was successfully produced and secreted from P. pastoris.  相似文献   
7.
A gene encoding chitinase was cloned from Ophiocordyceps unilateralis, a Formamidae-specific fungus, collected from Sirindhorn Peat Swamp Forest, Thailand. The O. unilateralis chitinase (OuChi) full-length gene (1311 bp) encodes 436 amino acids with the first 20 amino acids as a putative signal peptide. The gene showed highest identity (78%) to Isaria farinose endochitinase. To investigate if cross-species chitinase expression also enhances fungal toxicity, the mature OuChi gene was subcloned into an Agrobacterium binary vector pPZP-bar and then transformed into Beauveria bassiana strain BCC2659. Chitinase activity was detected using 4-methylumbelliferyl-β-D-N,N′-diacetylchitobioside. The fungal transformant expressing O. unilateralis chitinase showed higher toxicity against Spodoptera exigua. These results support the hypothesis that chitinolytic enzymes are one of several ‘virulence’ factors produced by entomopathogenic fungi during host encounter.  相似文献   
8.
Chondroitin sulfate (CS) and dermatan sulfate (DS) interact with various extracellular molecules such as growth factors, cytokines/chemokines, neurotrophic factors, morphogens, and viral proteins, thereby playing roles in a variety of biological processes including cell adhesion, proliferation, tissue morphogenesis, neurite outgrowth, infections, and inflammation/leukocyte trafficking. CS/DS are modified with sulfate groups at C-2 of uronic acid residues as well as C-4 and/or C-6 of N-acetyl-D-galactosamine residues, yielding enormous structural diversity, which enables the binding with numerous proteins. We have demonstrated that highly sulfated CS-E from squid cartilage, for example, interacts with heparin-binding proteins including midkine, pleiotrophin, and fibroblast growth factors expressed in brain with high affinity (Kd values in the nM range). Here, we analyzed the binding of CS and DS, which have a relatively low degree of sulfation and have been widely used as a nutraceutical and a drug for osteoarthritis etc., with a number of heparin-binding neurotrophic factors/cytokines using surface plasmon resonance (SPR) and structurally characterized the CS/DS chains. SPR showed that relatively low sulfated CS-A, DS, and CS-C also bound with significant affinity to midkine, pleiotrophin, hepatocyte growth factor, monokine-induced by interferon-γ, and stromal cell derived factor-1β, although the binding was less intense than that with highly sulfated CS-D and CS-E. These findings suggest that even low sulfated CS and/or DS chains may contain binding domains, which include fine sugar sequences with specific sulfation patterns, and that sugar sequences, conformations and electrostatic potential are more important than the simple degree of sulfation represented by disaccharide composition.  相似文献   
9.
A full-length xylanase gene, encoding 326 amino acids belonging to the fungal glycosyl hydrolase family 10, from Aspergillus terreus BCC129 was cloned and sequenced. Sequence analysis suggested that the first 25 amino acids of this enzyme is the signal peptide. Therefore, only the mature xylanase gene of 906 bp was cloned into a yeast expression vector, pPICZalphaA, for heterologous expression in Pichia pastoris. A band of approximately, 33 kDa was observed on the SDS-PAGE gel after one day of methanol induction. The expressed enzyme was purified by gel filtration chromatography. The purified recombinant xylanase demonstrated optimal activity at 60 degrees C, pH 5.0 and a Km of 4.8 +/- 0.07 mg/ml and a Vmax of 757 +/- 14.54 micromol/min mg, using birchwood xylan as a substrate. Additionally, the purified enzyme demonstrated broad pH stability from 4 to 10 when incubated at 40 degrees C for 4 h. It also showed a moderate thermal stability since it retained 90% of its activity when incubated at 50 degrees C, 30 min, making this enzyme a potential use in the animal feed and paper and pulp industries.  相似文献   
10.
A subterranean limestone cave, Manao-Pee, was investigated for bacterial diversity and potential secondary metabolites production. Comparative 16 S rRNA analysis revealed that cave soil was highly dominated by Actinobacteria; whereas, Proteobacteria was highly abundant outside the cave. As Actinobacteria are biotechnologically valuable for their secondary metabolites, the diversity of the β-ketoacyl synthase (KSβ) was investigated. The results showed that the identified KSβ has 61–80% amino acid sequence identity to known sequences. Phylogenetic analysis placed some of the sequences in novel clades, suggesting the presence of novel KSβ domains. Thus, Manao-Pee cave is a promising habitat to discover potential novel bioactive compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号