首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6725篇
  免费   528篇
  国内免费   8篇
  7261篇
  2023年   25篇
  2022年   68篇
  2021年   119篇
  2020年   64篇
  2019年   96篇
  2018年   128篇
  2017年   125篇
  2016年   231篇
  2015年   323篇
  2014年   383篇
  2013年   455篇
  2012年   554篇
  2011年   571篇
  2010年   304篇
  2009年   310篇
  2008年   453篇
  2007年   416篇
  2006年   343篇
  2005年   332篇
  2004年   327篇
  2003年   330篇
  2002年   261篇
  2001年   143篇
  2000年   126篇
  1999年   108篇
  1998年   72篇
  1997年   49篇
  1996年   59篇
  1995年   38篇
  1994年   34篇
  1993年   26篇
  1992年   39篇
  1991年   42篇
  1990年   29篇
  1989年   25篇
  1988年   18篇
  1987年   21篇
  1986年   16篇
  1985年   17篇
  1984年   15篇
  1983年   13篇
  1982年   22篇
  1981年   20篇
  1980年   16篇
  1979年   9篇
  1976年   7篇
  1974年   11篇
  1973年   8篇
  1972年   10篇
  1971年   11篇
排序方式: 共有7261条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
An increase in the aggregation of misfolded/damaged polyubiquitinated proteins has been the hallmark of many age-related neurodegenerative diseases. The accumulation of these potentially toxic proteins in brain increases with age, in part due to increased oxidative and inflammatory stresses. Walnuts, rich in omega fatty acids, have been shown to improve memory, cognition and neuronal effects related to oxidative stress (OS) and inflammation (INF) in animals and human trials. The current study found that feeding 19-month-old rats with a 6% or 9% walnut diet significantly reduced the aggregation of polyubiquitinated proteins and activated autophagy, a neuronal housekeeping function, in the striatum and hippocampus. Walnut-fed animals exhibited up-regulation of autophagy through inhibiting phosphorylation of mTOR, up-regulating ATG7 and Beclin 1, and turnover of MAP1BLC3 proteins. The clearance of polyubiquitinated protein aggregates such as p62/SQSTM1 was more profound in hippocampus, a critical region in the brain involved in memory and cognitive performance, than striatum. The clearance of ubiquitinated aggregates was in tandem with significant reductions in OS/INF, as indicated by the levels of P38-MAP kinase and phosphorylations of nuclear factor kappa B and cyclic AMP response element binding protein. The results demonstrate the effectiveness of a walnut-supplemented diet in activating the autophagy function in brain beyond its traditionally known antioxidant and anti-inflammatory benefits.  相似文献   
6.
3-Oxoacid CoA-transferase, which catalyses the first committed step in the oxidation of ketone bodies, is uniquely regulated in developing rat brain. Changes in 3-oxoacid CoA-transferase activity in rat brain during the postnatal period are due to changes in the relative rate of synthesis of the enzyme. To study the regulation of this enzyme, we identified, with a specific polyclonal rabbit anti-(rat 3-oxoacid CoA-transferase), two positive cDNA clones (approx. 800 bp) in a lambda gtll expression library, constructed from poly(A)+ RNA from brains of 12-day-old rats. One of these clones (lambda CoA3) was subcloned into M13mp18 and subjected to further characterization. Labelled single-stranded probes prepared by primer extension of the M13mp18 recombinant hybridized to a 3.6 kb mRNA. Rat brain mRNA enriched by polysome immunoadsorption for a single protein of size 60 kDa which corresponds to the precursor form of 3-oxoacid CoA-transferase was also found to be similarly enriched for the hybridizable 3.6 kb mRNA complementary to lambda CoA3. Affinity-selected antibody to the lambda CoA3 fusion protein inhibited 3-oxoacid CoA-transferase activity present in rat brain mitochondrial extracts. The 3.6 kb mRNA for 3-oxoacid CoA-transferase was present in relative abundance in rat kidney and heart, to a lesser extent in suckling brain and mammary gland and negligible in the liver. The specific mRNA was also found to be 3-fold more abundant in the brain from 12-day-old rats as compared with 18-day-old foetuses and adult rats, corresponding to the enzyme activity and relative rate of synthesis profile during development. These data suggest that 3-oxoacid CoA-transferase enzyme activity is regulated at a pretranslational level.  相似文献   
7.
A somatic cell hybrid mapping panel was constructed to localize cloned DNA sequences to any of 15 potentially different regions of human chromosome 17. Relatively high-resolution mapping is possible for 50% of the chromosome length in which 12 breakpoints are distributed over approximately 45 megabases, with an average spacing estimated at 1 breakpoint every 2-7 megabases. This high-resolution capability includes the pericentromeric region of 17 to which von Recklinghausen neurofibromatosis (NF1) has recently been mapped. Using 20 cloned genes and anonymous probes, we have tested the expected order and location of panel breakpoints and confirmed, refined, or corrected the regional assignment of several cloned genes and anonymous probes. Four markers with varying degrees of linkage to NF1 have been physically localized and ordered by the panel: the loosely linked markers myosin heavy chain 2 (25 cM) to p12----13.105 and nerve growth factor receptor (14 cM) to q21.1----q23; the more closely linked pABL10-41 (D17S71, 5 cM) to p11.2; and the tightly linked pHHH202 (D17S33) to q11.2-q12. Thus, physical mapping of linked markers confirms a pericentromeric location of NF1 and, along with other data, suggests the most likely localization is proximal 17q.  相似文献   
8.
Molecular basis of mouse Himalayan mutation   总被引:9,自引:0,他引:9  
Many different coat-colors result from the c-locus mutation in the mouse. One of these interesting mutants is a Himalayan, which produces temperature sensitive tyrosinase, and the basis of this sensitivity remains unknown. We cultured Himalayan mouse melanocytes from the skin and constructed a cDNA library; then, we isolated the Himalayan tyrosinase cDNAs and determined the nucleotide sequence. The tyrosinase gene in the Himalayan mouse contains an A----G change at nucleotide 1259 that alters a histidine residue to an arginine residue at amino acid 420. This histidine residue and the surrounding amino acids are conserved in their evolution from mouse to human. Interestingly, the residue with its surrounding eight amino acids are aligned between mouse b-protein and human tyrosinase. These results indicate the possibility that the altered residue at amino acid 420 of mouse tyrosinase may be important in stabilization of the tyrosinase molecule, or in interaction with other molecules, such as tyrosinase inhibitors.  相似文献   
9.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT, EC 2.4.2.8) is a purine salvage enzyme that catalyses the conversion of hypoxanthine and guanine to their respective mononucleotides. Partial deficiency of this enzyme can result in the overproduction of uric acid leading to a severe form of gout, whilst a virtual absence of HPRT activity causes the Lesch-Nyhan syndrome which is characterised by hyperuricaemia, mental retardation, choreoathetosis and compulsive self-mutilation. The HPRT-encoding gene is located on the X chromosome in the region q26–q27 and consists of nine exons and eight introns totalling 57 kb. This gene is transcribed to produce an mRNA of 1.6 kb, which contains a protein encoding region of 654 nucleotides. With the advent of increasingly refined techniques of molecular biology, it has been possible to study the HPRT gene of individuals with a deficiency in HPRT activity to determine the genetic basis of the enzyme deficiency. Many different mutations throughout the coding region have been described, but in the absence of precise information on the three-dimensional structure of the HPRT protein, it remains difficult to determine any consistent correlation between the structure and function of the enzyme.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号