首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1974年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The esterification kinetics of chlorophyllide, obtained by a single flash of light, were investigated in etiolated barley ( Hordeum vulgare L.) and oat ( Avena sativa L.) leaves. A rapid phase, leading to esterification of 15% of total chlorophyllide within 15-30 s, was followed by a lag-phase of nearly 2 min and a subsequent main phase, leading to esterification of 85% of total chlorophyllide within 30-60 min. The presence of additional protochlorophyllide, produced in the leaves by incubation with 5-aminolevulinate, did not change the esterification kinetics. The rapid phase was identical after partial (11-15%) and full (>80%) photoconversion of protochlorophyllide; the ability for a second rapid esterification phase was restored in a dark period of at least 10 min. Cooling the leaves to 0 degrees C abolished the esterification of the main phase while the rapid phase remained unchanged. The prolamellar bodies were already in part transformed into prothylakoid-like structures within 2-5 min after a full flash but not after a weak flash (11% photoconversion); in the latter case, the corresponding transformation required a dark period of about 45 min. The existence of subcomplexes of prolamellar bodies containing NADPH:protochlorophyllide oxidoreductase and chlorophyll synthase in the ratio 7:1 is discussed.  相似文献   
2.
3.
The pigments of etiolated leaves of barley ( Hordeum vulgare L.) were analysed during dark periods after flash illumination, and the results were compared with in vivo spectroscopy of the leaves. Pretreatment of the leaves with kinetin slightly stimulated and pretreatment with NaF and anaerobiosis inhibited the esterification of chlorophyllide a (Chlide) at 10–40 min after the flash, whereas the rapid esterification within 30 s after the flash remained unchanged. Irrespective of pretreatment, the amount of esterified pigment was, at any time, identical with the amount of pigment that had shifted its absorption from 684 to 672 nm (Shibata shift). Cycloheximide (CHI) had only a small inhibitory effect on esterification, but drastically inhibited the hydrogenation of geranylgeraniol to phytol, bound to Chlide. The regeneration of long-wavelength protochlorophyllide a (Pchlide650) was stimulated by kinetin and inhibited by CHI and NaF. During the rapid phase (0–30 s after the flash), the esterification was faster than the regeneration of Pchlide650, and this, in turn, was faster than the formation of photoactive Pchlide. The kinetics changed after pretreatment with 5-aminolaevulinic acid: regeneration of Pchlide650 was the fastest reaction and the Shibata shift preceded the esterification of Chlide. The results are discussed as pigment exchange reactions at NADPH:protochlorophyllide oxidoreductase (POR; EC 1.6.99.1).  相似文献   
4.
The kinetics of formation of esterified chlorophyll in etiolated barley (Hordeum vulgare L.) leaves after illumination with a single flash was studied. It was found that after partial (14–24%) and after full photoreduction of protochlorophyllide, the same quantity of esterified products appear during the first 5 s after the flash. The rest of formed chlorophyllide was esterified in a slow process during at least 30 min at 15 °C. The product of fast esterification can be correlated with ‘short-wavelength’ chlorophyll, characterized by a fluorescence emission peak at 673–675 nm. This is the only chlorophyll form detectable within 20 s after partial (14%) photoconversion, and it appears at the same time as the shoulder of the chlorophyll(ide) fluorescence after full photoconversion. The main product after full photoconversion shows a fluorescence at 689 nm shifting in darkness within 15 s to 693 nm and then within 30 min to 682 nm (Shibata shift). The slow esterification proceeds with similar kinetics as the Shibata shift. We propose that the fast esterification of only part of total chlorophyllide after full photoconversion of protochlorophyllide in etiolated leaves reflects the restricted capacity of the esterifying system. The slow esterification of the residual chlorophyllide may be time-limited by its release from protochlorophyllide oxidoreductase, by disaggregation of prolamellar bodies and by diffusion of tetraprenyl diphosphates towards chlorophyll synthase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
Chlorophyll (Chl) accumulation and delayed luminescence of PSII were compared in greening barley leaves pretreated and untreated with diuron (DCMU) in the etiolated state, and reactions of two photosystems were studied in the plastids isolated from the pretreated and untreated leaves. The effect of treatment in light of post-etiolated leaves after 40-h illumination with 5-aminolevulinic acid (ALA), on the content of Chl and its precursor, protochlorophyllide (PChld) was also studied. The pretreatment of etiolated leaves with DCMU did not affect the rate of greening and the stable level of Chl content in barley. ALA, when introduced to leaves after the termination of Chl accumulation, increased PChld, but not Chl level. We suppose that the primary cause of greening cessation in etiolated leaves is the inhibition and cessation of the synthesis of apoproteins of pigment–protein complexes. The exhaustion of binding sites for newly synthesized Chl molecules leads to their retention in the so-called retroinhibitory pool of Chl, thus resulting in the inhibition of ALA synthesis by a negative feedback mechanism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号