首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
2.
The family of membrane-associated guanylate kinases (MAGUK) comprises peripheral membrane proteins involved in the formation of specialized cell-cell junctions. MAGUK proteins possess a conserved domain composition, containing PDZ, guanylate kinase, and SH3 or WW domains. MAGI-1 is a recently identified member of the MAGUK protein family. Three splice variantsof MAGI-1 have been characterized to date, including MAGI-1a, -1b, and -1c. MAGI-1b is predominantly associated with the crude membrane fraction. Here we show that the fifth PDZ domain of MAGI-1b is essential for membrane localization. We have also identified beta-catenin as a potential ligand for this PDZ domain. MAGI-1b forms complexes with beta-catenin and E-cadherin during the formation of cell-cell junctions in MDCK cells. In agreement with this observation, a significant portion of a GFP fusion of MAGI-1b localizes to the basolateral membrane of polarized MDCK cells.  相似文献   
3.
Prion diseases comprise a group of fatal neurodegenerative disorders characterized by the autocatalytic conversion of the cellular prion protein PrPC into the infectious misfolded isoform PrPSc. Increasing evidence supports a specific role of oxidative stress in the onset of pathogenesis. Although the associated molecular mechanisms remain to be elucidated in detail, several studies currently suggest that methionine oxidation already detected in misfolded PrPSc destabilizes the native PrP fold as an early event in the conversion pathway. To obtain more insights about the specific impact of surface-exposed methionine residues on the oxidative-induced conversion of human PrP we designed, produced, and comparatively investigated two new pseudosulfoxidation mutants of human PrP 121–231 that comprises the well-folded C-terminal domain. Applying circular dichroism spectroscopy and dynamic light scattering techniques we showed that pseudosulfoxidation of all surface exposed Met residues formed a monomeric molten globule-like species with striking similarities to misfolding intermediates recently reported by other groups. However, individual pseudosulfoxidation at the polymorphic M129 site did not significantly contribute to the structural destabilization. Further metal-induced oxidation of the partly unfolded pseudosulfoxidation mutant resulted in the formation of an oligomeric state that shares a comparable size and stability with PrP oligomers detected after the application of different other triggers for structural conversion, indicating a generic misfolding pathway of PrP. The obtained results highlight the specific importance of methionine oxidation at surface exposed residues for PrP misfolding, strongly supporting the hypothesis that increased oxidative stress could be one causative event for sporadic prion diseases and other neurodegenerative disorders.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号