首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
The nonhomologous end-joining (NHEJ) pathway is essential for the preservation of genome integrity, as it efficiently repairs DNA double-strand breaks (DSBs). Previous biochemical and genetic investigations have indicated that, despite the importance of this pathway, the entire complement of genes regulating NHEJ remains unknown. To address this, we employed a plasmid-based NHEJ DNA repair screen in budding yeast (Saccharomyces cerevisiae) using 369 putative nonessential DNA repair-related components as queries. Among the newly identified genes associated with NHEJ deficiency upon disruption are two spindle assembly checkpoint kinases, Bub1 and Bub2. Both observation of resulting phenotypes and chromatin immunoprecipitation demonstrated that Bub1 and -2, either alone or in combination with cell cycle regulators, are recruited near the DSB, where phosphorylated Rad53 or H2A accumulates. Large-scale proteomic analysis of Bub kinases phosphorylated in response to DNA damage identified previously unknown kinase substrates on Tel1 S/T-Q sites. Moreover, Bub1 NHEJ function appears to be conserved in mammalian cells. 53BP1, which influences DSB repair by NHEJ, colocalizes with human BUB1 and is recruited to the break sites. Thus, while Bub is not a core component of NHEJ machinery, our data support its dual role in mitotic exit and promotion of NHEJ repair in yeast and mammals.  相似文献   
3.
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.KEY WORDS: HDAC, S1P, THI, dys, Dystrophin, mdx  相似文献   
4.
Difficulties in specific detection of transfected DNA in cells represent an important limitation in the study of the gene transfer process. We studied the cellular entry and fate of a plasmid DNA complexed with a cationic lipid, Vectamidine (3-tetradecylamino-N-tert-butyl-N'-tetradecylpropionamidine) in BHK21 cells. To facilitate its detection inside the cells, bromodeoxyuridine (BrdU) was incorporated into plasmid DNA under conditions that minimize plasmid alteration. BrdU was localized in cells incubated with Vectamidine/BrdU-labeled plasmid DNA complexes by immunogold labeling and electron microscopy (EM). Labeling was predominantly associated with aggregated liposome structures at the surface of and inside the cells. EM observations of cells transfected with Vectamidine/DNA complexes showed that the liposome/DNA aggregates accumulate in large vesicles in the cell cytosol. On the other hand, using rhodamine-labeled Vectamidine and revealing BrdU with FITC-conjugated antibodies permitted simultaneous detection in the cells of both components of the complexes with confocal laser scanning microscopy. The DNA and lipids co-localized at the surface of and inside the cells, indicating that the complex is internalized as a whole. Our results show that the BrdU-labeled plasmid DNA detection system can be a useful tool to visualize exogenous DNA entry into cells by a combination of electron and confocal microscopy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号