首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1990年   1篇
  1973年   1篇
  1972年   1篇
  1954年   1篇
  1953年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Several Cl channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl > Br > NO3 > I. Single-channel recordings revealed a unit conductance of ~ 40 pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~ − 65 mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~ 20 pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~ + 25 mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253–260).  相似文献   
2.
Antiherpetic evaluation of five nonahydroxyterphenoyl-containing C-glycosidic ellagitannins, castalagin (1), vescalagin (2), grandinin (3), roburin B (5), and roburin D (7), was performed in cultured cells against four HSV-1 and HSV-2 strains, two of which were resistant to Acyclovir. All five ellagitannins displayed significant anti-HSV activities against the Acyclovir-resistant mutants, but the monomeric structures 1-3 were more active than the dimers 5 and 7. Vescalagin (2) stands out among the five congeners tested as the most potent and selective inhibitor, with an IC50 value in the subfemtomolar range and a selectivity index 5x10(5) times higher than that of Acyclovir. Molecular modeling was used to provide a rationale for the surprisingly lower activity profile of its epimer castalagin (1). These ellagitannins have promising potential as novel inhibitors in the search for non-nucleoside drugs active against Acyclovir-resistant herpes viruses.  相似文献   
3.
Vacuolar proton-translocating ATPases (V-ATPases) are responsible for organelle acidification in all eukaryotic cells. The yeast V-ATPase, known to be regulated by reversible disassembly in response to glucose deprivation, was recently reported to be regulated by extracellular pH as well (Padilla-López, S., and Pearce, D. A. (2006) J. Biol. Chem. 281, 10273–10280). Consistent with those results, we find 57% higher V-ATPase activity in vacuoles isolated after cell growth at extracellular pH of 7 than after growth at pH 5 in minimal medium. Remarkably, under these conditions, the V-ATPase also becomes largely insensitive to reversible disassembly, maintaining a low vacuolar pH and high levels of V1 subunit assembly, ATPase activity, and proton pumping during glucose deprivation. Cytosolic pH is constant under these conditions, indicating that the lack of reversible disassembly is not a response to altered cytosolic pH. We propose that when alternative mechanisms of vacuolar acidification are not available, maintaining V-ATPase activity becomes a priority, and the pump is not down-regulated in response to energy limitation. These results also suggest that integrated pH and metabolic inputs determine the final assembly state and activity of the V-ATPase.  相似文献   
4.
Insect seed predation may vary depending on seed production. The present study considers the hypothesis that the rates of seed predation tend to be smaller in years of higher fruit production. Thus, we monitored the production of fruits and predation of seeds of the palm Syagrus romanzoffiana over 2?years in the Atlantic Forest (Parque Municipal da Lagoa do Peri, Florianópolis, SC, Brazil), between July 2006 and June 2008. Plots of 0.25?m2 were fitted under 20 mother plants and fruits were monthly collected for assessment of abundance and seed predation. There was variation in fruit production between the 2?years and among reproductive plants. Predation rates were high and occurred in the predispersal phase by the Curculionidae Revena rubiginosa Boheman, Anchylorhynchus aegrotus Fahraeus, and Anchylorhynchus variabilis Gyllenhal. Seed predation by these species of Anchylorhynchus is first registered in the present study. In average, about 60% of the seeds monthly produced in the population tend to escape insect predation in year of high or low production, becoming available for recruitment. The predation rate was not related to the amount of fruits produced per reproductive plant. Also, different than expected, there was a positive relation between the rates of seed predation and the total of fruits produced monthly on the plots. Thus, no evidence for the satiation of insect seed predators was found in this study with S. romanzoffiana.  相似文献   
5.
There has been considerable interest recently in the application of bagging in the classification of both gene-expression data and protein-abundance mass spectrometry data. The approach is often justified by the improvement it produces on the performance of unstable, overfitting classification rules under small-sample situations. However, the question of real practical interest is whether the ensemble scheme will improve performance of those classifiers sufficiently to beat the performance of single stable, nonoverfitting classifiers, in the case of small-sample genomic and proteomic data sets. To investigate that question, we conducted a detailed empirical study, using publicly-available data sets from published genomic and proteomic studies. We observed that, under t-test and RELIEF filter-based feature selection, bagging generally does a good job of improving the performance of unstable, overfitting classifiers, such as CART decision trees and neural networks, but that improvement was not sufficient to beat the performance of single stable, nonoverfitting classifiers, such as diagonal and plain linear discriminant analysis, or 3-nearest neighbors. Furthermore, as expected, the ensemble method did not improve the performance of these classifiers significantly. Representative experimental results are presented and discussed in this work.  相似文献   
6.
Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.Key words: tropomyosin, actin, migration, invasion, cytoskeleton, actin dynamics, adhesionActin is the most abundant protein in eukaryotic cells and is critical for maintaining structural integrity. The polymerization of globular (G)-actin monomers forms actin filaments (F-actin),1 which play a role in diverse and complex cellular functions including intercellular transport of organelles and vesicles,2,3 cytokinesis,4 apoptosis5 and cell motility.6 Intricate details describing the molecular scale interactions between regulatory proteins and actin have been extensively investigated but the mechanistic control of diverse actin filament functions remain largely unclear. Recent improvements in analysis techniques7 and the use of physiologically relevant models of 3D cell culturing8 have now begun to reveal mechanisms of actin cytoskeleton regulation. Accruing evidence suggests that the actin decorating protein tropomyosin is a key regulator of actin filament specialization. Of particular interest is the impact that tropomyosin regulation has on actin filament activity during cell migration and invasion that underpins immunological cell homing, development, wound healing and metastasis.  相似文献   
7.
The regulator of ATPase of vacuoles and endosomes (RAVE) complex is implicated in vacuolar H+-translocating ATPase (V-ATPase) assembly and activity. In yeast, rav1∆ mutants exhibit a Vma growth phenotype characteristic of loss of V-ATPase activity only at high temperature. Synthetic genetic analysis identified mutations that exhibit a full, temperature-independent Vma growth defect when combined with the rav1∆ mutation. These include class E vps mutations, which compromise endosomal sorting. The synthetic Vma growth defect could not be attributed to loss of vacuolar acidification in the double mutants, as there was no vacuolar acidification in the rav1∆ mutant. The yeast V-ATPase a subunit is present as two isoforms, Stv1p in Golgi and endosomes and Vph1p in vacuoles. Rav1p interacts directly with the N-terminal domain of Vph1p. STV1 overexpression suppressed the growth defects of both rav1∆ and rav1∆vph1∆, and allowed RAVE-independent assembly of active Stv1p-containing V-ATPases in vacuoles. Mutations causing synthetic genetic defects in combination with rav1∆ perturbed the normal localization of Stv1–green fluorescent protein. We propose that RAVE is necessary for assembly of Vph1-containing V-ATPase complexes but not Stv1-containing complexes. Synthetic Vma phenotypes arise from defects in Vph1p-containing complexes caused by rav1∆, combined with defects in Stv1p-containing V-ATPases caused by the second mutation. Thus RAVE is the first isoform-specific V-ATPase assembly factor.  相似文献   
8.
Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V1 domain from the integral membrane Vo domain. Multiple stresses induce changes in V1-Vo assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). V-ATPase activation through V1-Vo assembly in response to salt stress is strongly dependent on PI(3,5)P2 synthesis. Purified Vo complexes preferentially bind to PI(3,5)P2 on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P2 levels in vivo recruits the N-terminal domain of Vo-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V1-Vo interaction, suggesting that interaction of Vph1p with PI(3,5)P2-containing membranes stabilizes V1-Vo assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1∆ and vac14∆ mutants and suggest that human disease phenotypes associated with PI(3,5)P2 loss may arise from compromised V-ATPase stability and regulation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号