首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   4篇
  2021年   2篇
  2020年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   8篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有68条查询结果,搜索用时 296 毫秒
1.
Kluyveromyces lactis, also known as dairy yeast, has numerous applications in scientific research and practice. It has been approved as a GRAS (Generally Recognized As Safe) organism, a probiotic, a biotechnological producer of important enzymes at industrial scale and a bioremediator of waste water from the dairy industry. Despite these important practical applications the sensitivity of this organism to genotoxic substances has not yet been assessed. In order to evaluate the response of K. lactis cells to genotoxic agents we have applied several compounds with well-known cyto- and genotoxic activity. The method of comet assay (CA) widely used for the assessment of DNA damages is presented here with new special modifications appropriate for K. lactis cells. The comparison of the response of K. lactis to genotoxins with that of Saccharomyces cerevisiae showed that both yeasts, although considered close relatives, exhibit species-specific sensitivity toward the genotoxins examined.  相似文献   
2.
3.
The influence of copper (II) ions on the growth, accumulation properties and superoxide dismutase (SOD) activity of a growing culture of Aspergillus niger B-77 were studied. Microbial growth, the level of copper (II) accumulation and SOD activity depended on the initial copper (II) concentration. Aspergillus niger is able to accumulate large amounts of copper (II) from the nutrient medium with 200 mg x l(-1) copper (II) ions without loosing its biological activities. Addition of copper (II) ions increased the SOD activity in the growing cell cultures. The changes in enzyme activity induced by heavy metal ions might be used as an indicator of intracellular oxy-intermediate generation in a cell culture growing under stress conditions.  相似文献   
4.
B‐cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry‐based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation of the receptor‐proximal signaling components, many of which are co‐regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR‐induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo‐lysosomal compartments. In addition, we show that BCL10 is modified by LUBAC‐mediated linear ubiquitylation, and demonstrate an important function of LUBAC in BCR‐induced NF‐κB signaling. Our results offer a global and integrated view of BCR signaling, and the provided datasets can serve as a valuable resource for further understanding BCR signaling networks.  相似文献   
5.
Api SI and Api SII are serine proteases of the honeybee venom containing allergenic determinants. Each protease consists of two structural modules: an N-terminal CUB (Api SI) or a clip domain (Api SII) and a C-terminal serine protease-like (SPL) domain. Both domains are connected with a linker peptide. The knowledge about the structure and function of Api SI and Api SII is limited mainly to their amino acid sequences. We constructed 3-D models of the two proteases using their amino acid sequences and crystallographic coordinates of related proteins. The models of the SPL domains were built using the structure of the prophenoloxidase-activating factor (PPAF)-II as a template. For modelling of the Api SI CUB domain the coordinates of porcine spermadhesin PSP-I were used. The models revealed the catalytic and substrate-binding sites and the negatively charged residue responsible for the trypsin-like activity. IgE-binding and antigenic sites in the two allergens were predicted using the models and programs based on the structure of known epitopes. Api SI and Api SII show structural and functional similarity to the members of the PPAF-II family. Most probably, they are part of the defence system of Apis mellifera.  相似文献   
6.
The crystal structure of the major component of the Vipera ammodytes ammodytes venomic, a flavotoxin, member of the l-amino acid oxidase (LAAO) family, has been determined and refined at 2.6 ? resolution. The asymmetric unit consists of four molecules, each bound to oxidized FAD, representing a dimer of dimers. The binding of four Zn(2+) ions stabilizes the enzymatically active quaternary structure and is considered important for the biological activity of LAAO and other flavoproteins. Each monomer consists of three domains with a cofactor bound between the FAD and substrate binding domains, and a solvent exposed glycosylation site which is considered crucial for the toxicity. Comparison of LAAO structures in the absence and presence of a substrate indicates conformational changes in the dynamic active site. The active site H-bond network involving the triad Lys326-Water-N5 of FAD is formed only upon substrate binding, and results in the increased mobility of the isoalloxazine system. Details of the catalytic transformation of amino acid substrates are discussed.  相似文献   
7.
Snake venom peptidomes are valuable sources of pharmacologically active compounds. We analyzed the peptidic fractions (peptides with molecular masses < 10,000 Da) of venoms of Vipera ammodytes meridionalis (Viperinae), the most toxic snake in Europe, and Bothrops jararacussu (Crotalinae), an extremely poisonous snake of South America. Liquid chromatography/mass spectrometry (LC/MS), direct infusion electrospray mass spectrometry (ESI-MS) and matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were applied to characterize the peptides of both snake venoms. 32 bradykinin-potentiating peptides (BPPs) were identified in the Crotalinae venom and their sequences determined. 3 metalloproteinase inhibitors, 10 BPPs and a Kunitz-type inhibitor were observed in the Viperinae venom peptidome. Variability in the C-terminus of homologous BPPs was observed, which can influence the pharmacological effects. The data obtained so far show a subfamily specificity of the venom peptidome in the Viperidae family: BPPs are the major peptide component of the Crotalinae venom peptidome lacking Kunitz-type inhibitors (with one exception) while the Viperinae venom, in addition to BPPs, can contain peptides of the bovine pancreatic trypsin inhibitor family. We found indications for a post-translational phosphorylation of serine residues in Bothrops jararacussu venom BPP (S[combining low line]QGLPPGPPIP), which could be a regulatory mechanism in their interactions with ACE, and might influence the hypotensive effect. Homology between venom BPPs from Viperidae snakes and venom natriuretic peptide precursors from Elapidae snakes suggests a structural similarity between the respective peptides from the peptidomes of both snake families. The results demonstrate that the venoms of both snakes are rich sources of peptides influencing important physiological systems such as blood pressure regulation and hemostasis. The data can be used for pharmacological and medical applications.  相似文献   
8.
Hemocyanins are dioxygen-transporting proteins freely dissolved in the hemolymph of mollusks and arthropods. Dynamic light scattering and time-resolved fluorescence measurements show that the oxygenated and apo-forms of the Rapana thomasiana hemocyanin, its structural subunits RtH1 and RtH2, and those of the functional unit RtH2e, exist in different conformations. The oxygenated respiratory proteins are less compact and more asymmetric than the respective apo-forms. Different conformational states were also observed for the R. thomasiana hemocyanin in the absence and presence of an allosteric regulator. The results are in agreement with a molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins including transfer of conformational changes from one functional unit to another.  相似文献   
9.
Recent experimental evidence supports the hypothesis that prion proteins (PrPs) are involved in the Cu(II) metabolism. Moreover, the copper binding region has been implicated in transmissible spongiform encephalopathies, which are caused by the infectious isoform of prion proteins (PrP(Sc)). In contrast to mammalian PrP, avian prion proteins have a considerably different N-terminal copper binding region and, most interestingly, are not able to undergo the conversion process into an infectious isoform. Therefore, we applied x-ray absorption spectroscopy to analyze in detail the Cu(II) geometry of selected synthetic human PrP Cu(II) octapeptide complexes in comparison with the corresponding chicken PrP hexapeptide complexes at pH 6.5, which mimics the conditions in the endocytic compartments of neuronal cells. Our results revealed that structure and coordination of the human PrP copper binding sites are highly conserved in the pH 6.5-7.4 range, indicating that the reported pH dependence of copper binding to PrP becomes significant at lower pH values. Furthermore, the different chicken PrP hexarepeat motifs display homologous Cu(II) coordination at sub-stoichiometric copper concentrations. Regarding the fully cation-saturated prion proteins, however, a reduced copper coordination capability is supposed for the chicken prion protein based on the observation that chicken PrP is not able to form an intra-repeat Cu(II) binding site. These results provide new insights into the prion protein structure-function relationship and the conversion process of PrP.  相似文献   
10.
Proteinase K is widely used in tests for the presence of infectious prion protein causing fatal spongiform encephalopathies. To investigate possible interactions between the enzyme and the functionally important N-terminal prion domain, we crystallized mercury-inhibited proteinase K in the presence of the synthetic peptides GGGWGQPH and HGGGW. The octapeptide sequence is identical to that of a single octapeptide repeat (OPR) from the physiologically important OPR region. Here, we present the first direct evidence for the complex formation between a proteolytic enzyme and a segment of human prion molecule. The X-ray structures of the complexes at 1.4 and 1.8A resolution, respectively, revealed that in both cases the segment GGG is strongly bound as a real substrate at the substrate recognition site of the proteinase forming an antiparallel beta-strand between the two parallel strands of Asn99-Tyr104 and Ser132-Gly136. The complex is stabilized through an extended H-bonding network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号